Do you want to publish a course? Click here

Gravitys Rainbow: a bridge towards Horava-Lifshitz gravity

125   0   0.0 ( 0 )
 Added by Emmanuil Saridakis
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the connection between Gravitys Rainbow and Horava-Lifshitz gravity, since both theories incorporate a modification in the UltraViolet regime which improves their quantum behavior at the cost of the Lorentz invariance loss. In particular, extracting the Wheeler-De Witt equations of the two theories in the case of Friedmann-Lemaitre-Robertson-Walker and spherically symmetric geometries, we establish a correspondence that bridges them.



rate research

Read More

In this paper, we study the various cylindrical solutions (cosmic strings) in gravitys rainbow scenario. In particular, we calculate the gravitational field equations corresponding to energy-dependent background. Further, we discuss the possible Kasner, quasi-Kasner and non-Kasner exact solutions of the field equations. In this framework, we find that quasi-Kasner solutions can not be realized in gravitys rainbow. Assuming only time-dependent metric functions, we also analyse the time-dependent vacuum cosmic strings in gravitys rainbow, which are completely different than the other GR solutions.
In this paper, we will study the rainbow deformation of the FRW cosmology in both Einstein gravity and Gauss-Bonnet gravity. We will demonstrate that the singularity in the FRW cosmology can be removed because of the rainbow deformation of the FRW metric. We will obtain the general constraints required for the FRW cosmology to be free from singularities. It will be observed that the inclusion of Gauss-Bonnet gravity can significantly change the constraints required to obtain a nonsingular universes. We will use a rainbow functions motivated from the hard spectra of gamma-ray bursts to deform the FRW cosmology, and it will be explicitly demonstrated that such a deformation removes the singularity in the FRW cosmology.
In this paper, we investigate thermodynamical structure of dyonic black holes in the presence of gravitys rainbow. We confirm that for super magnetized and highly pressurized scenarios, the number of black holes phases is reduced to a single phase. In addition, due to specific coupling of rainbow functions, it is possible to track the effects of temporal and spatial parts of our setup on thermodynamical quantities/behaviors including equilibrium point, existence of multiple phases, possible phase transitions and conditions for having a uniform stable structure.
Non-stationary null dust in a spherically symmetric spacetime is studied in the context of a general-covariant Horava-Lifshitz theory. The non-minimal coupling to matter is considered in the infrared limit. The aim of this paper is to study whether the collapse of a null dust-like fluid can be a solution of Hov{r}ava-Lifshitz theory in the infrared limit. We have shown that the unique possible solution is static. This solution represents a Minkowski spacetime since the energy density is null.
The effects of Horava-Lifshitz corrections to the gravito-magnetic field are analyzed. Solutions in the weak field, slow motion limit, referring to the motion of a satellite around the Earth are considered. The post-newtonian paradigm is used to evaluate constraints on the Horava-Lifshitz parameter space from current satellite and terrestrial experiments data. In particular, we focus on GRAVITY PROBE B, LAGEOS and the more recent LARES mission, as well as a forthcoming terrestrial project, GINGER.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا