Do you want to publish a course? Click here

Same-sign trileptons as a signal of sneutrino lightest supersymmetric partlcle

182   0   0.0 ( 0 )
 Added by Nabarun Chakrabarty
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Contrary to common expectation, a left-sneutrinos can occasionally be the lightest supersymmet- ric particle. This has important implications in both collider and dark matter studies. We show that same-sign tri-lepton (SS3L) events at the Large Hadron Collider, with any lepton having opposite sign vetoed, distinguish such scenarios, up to gluino masses exceeding 2 TeV. The jets + M ET signal rate is somewhat suppressed in this case, thus enhancing the scope of leptonic signals.



rate research

Read More

We have explored a minimal supersymmetric standard model scenario extended by one pair of gauge singlets per generation. In the model light neutrino masses and their mixings are generated via inverse seesaw mechanism. In such a scenario, a right-handed sneutrino can be the lightest supersymmetric particle and a cold Dark Matter (DM) candidate. If Casas-Ibarra parametrisation is imposed on the Dirac neutrino Yukawa coupling matrix ($Y_{ u}$) to fit the neutrino oscillation data, the resulting $Y_{ u}$ is highly constrained from the lepton flavor violating (LFV) decay constraints. The smallness of $Y_{ u}$ requires the sneutrino DM to co-annihilate with other sparticle(s) in order to satisfy DM relic density constraint. We have studied sneutrino co-annihilation with wino and observed that this sneutrino-wino compressed parameter space gives rise to a novel same-sign trilepton signal for the stop quark, which is more effective than the conventional stop search channels in the present framework. We have shown that the choice of neutrino mass hierarchy strongly affects the signal event rate, making it easier to probe the scenario with inverted mass hierarchy.
We demonstrate that the LHC will be sensitive to quantum correlations between two quarks inside the proton. Same-sign W-boson pair production is the most promising channel for clear measurements of double parton scattering. The left-handed nature of the coupling between quarks and W-bosons makes it a prime probe to measure parton spin correlations. We perform a detailed analysis of double parton scattering, including relevant backgrounds. The analysis reveals that measurements comparing the rate at which two muons from W boson decays are produced in the same compared to opposite hemispheres are especially sensitive to spin correlations between two quarks inside the proton. We provide estimates of the significance of the measurements as a function of the integrated luminosity.
The future runs of LHC offer a unique opportunity to measure correlations between two partons inside the proton, which have never been experimentally detected. The process of interest is the production of two positively charged W-bosons decaying in the muon channel. We present a detailed analysis of proton-proton collisions at $sqrt{s}$ = 13 TeV, where we combine Monte Carlo event generators with our calculations of parton correlations. We carefully compare double parton scattering to relevant background processes and trace a path towards a clean signal sample. Several observables are constructed to demonstrate the effect of parton correlations with respect to clear benchmark values for uncorrelated scatterings. We find that especially spin correlations can be responsible for large effects in the variables we study, because of their direct relation with the parton angular momentum and, therefore, the directions of the muon momenta. We estimate the significance of the measurements as a function of the integrated luminosity and conclude that the LHC has the potential to detect, or put strong limits on, parton correlations in the near future.
We investigate the prospect of searching for new physics via the novel signature of same-sign diboson + ${E!!!!/}_{T}$ at current and future LHC. We study three new physics models: (i) natural SUSY models, (ii) type-III seesaw model and (iii) type-II seesaw/Georgi-Machacek model. In the first two class of models, this signature arises due to the presence of a singly-charged particle which has lifetime long enough to escape detection, while in the third model this signature originates resonantly from a doubly-charged particle produced along with two forward jets that, most likely, would escape detection. We analyze in great detail the discovery prospects of the signal in these three classes of models in the current as well as the upcoming runs of the LHC (such as HL-LHC and HE-LHC) by showing a distinction among these scenarios.
We study the polarization of positively charged $W$s in the scattering of massive electroweak bosons at hadron colliders. We rely on the separation of weak boson polarizations in the gauge-invariant, doubly-resonant part of the amplitude in Monte Carlo simulations. Polarizations depend on the reference frame in which they are defined. We discuss the change in polarization fractions and in kinematic distributions arising from defining polarization vectors in two different reference frames which have been employed in recent experimental analyses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا