In coupled-channel models the poles of the scattering S-matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect, too. The purpose of this paper is to show that in coupled-channel problem all poles of the S-matrix can be calculated with properly constructed complex-energy basis. The Berggren basis is used for expanding the coupled-channel solutions. The location of the poles of the S-matrix were calculated and compared with an exactly solvable coupled-channel problem: the one with the Cox potential. We show that with appropriately chosen Berggren basis poles of the S-matrix including the shadow ones can be determined.
The goal of this paper is to calculate bound, resonant and scattering states in the coupled-channel formalism without relying on the boundary conditions at large distances. The coupled-channel solution is expanded in eigenchannel bases i.e. in eigenfunctions of diagonal Hamiltonians. Each eigenchannel basis may include discrete and discretized continuum (real or complex energy) single particle states. The coupled-channel solutions are computed through diagonalization in these bases. The method is applied to a few two-channels problems. The exact bound spectrum of the Poeschl-Teller potential is well described by using a basis of real energy continuum states. For deuteron described by Reid potential, the experimental energy and the S and D contents of the wave function are reproduced in the asymptotic limit of the cutoff energy. For the Noro-Taylor potential resonant state energy is well reproduced by using the complex energy Berggren basis. It is found that the expansion of the coupled-channel wave function in these eigenchannel bases require less computational efforts than the use of any other basis. The solutions are stable and converge as the cutoff energy increases.
A transformation of supersymmetric quantum mechanics for N coupled channels is presented, which allows the introduction of up to N degenerate bound states without altering the remaining spectrum of the Hamiltonian. Phase equivalence of the Hamiltonian can be restored by two successive supersymmetric transformations at the same energy. The method is successfully applied to the 3S1-3D1 coupled channels of the nucleon-nucleon system and a set of Moscow-type potentials is thus generated.
The question of how the scattering cross section changes when the spectra of the colliding nuclei have low-excitation particle-emitting resonances is explored using a multi-channel algebraic scattering (MCAS) method. As a test case, the light-mass nuclear target 8Be, being particle-unstable, has been considered. Nucleon-nucleus scattering cross sections, as well as the spectra of the compound nuclei formed, have been determined from calculations that do, and do not, consider particle emission widths of the target nuclear states. The resonant character of the unstable excited states introduces a problem because the low-energy tails of these resonances can intrude into the sub-threshold, bound-state region. This unphysical behaviour needs to be corrected by modifying, in an energy-dependent way, the shape of the target resonances from the usual Lorentzian one. The resonance function must smoothly reach zero at the elastic threshold. Ways of achieving this condition are explored in this paper.
We present a coupled-channel Lagrangian approach (GiM) to describe the $pi N to pi N$, $2pi N$ scattering in the resonance energy region. The $2pi N$ production has been significantly improved by using the isobar approximation with $sigma N$ and $pi Delta(1232)$ in the intermediate state. The three-body unitarity is maintained up to interference pattern between the isobar subchannels. The scattering amplitudes are obtained as a solution of the Bethe-Salpeter equation in the $K$ matrix approximation. As a first application we perform a partial wave analysis of the $pi N to pi N$, $pi^0pi^0 N$ reactions in the Roper resonance region. We obtain $R_{sigma N}(1440)=27^{+4}_{-9}$,% and $R_{sigma N}(1440)=12^{+5}_{-3}$,% for the $sigma N$ and $pi Delta$ decay branching ratios of $N^*(1440)$ respectively. The extracted $pi N$ inelasticities and reaction amplitudes are consistent with the results from other groups.
We employ a collective vibration coupled-channel model to describe the nucleon-16O cluster systems, obtaining low-excitation spectra for 17O and 17F. Bound and resonance states of the compound systems have been deduced, showing good agreement with experimental spectra. Low energy scattering cross sections of neutrons and protons from 16O also have been calculated and the results compare well with available experimental data.