Do you want to publish a course? Click here

Zero-mode anomaly in the RKKY interaction on bipartite lattices

188   0   0.0 ( 0 )
 Added by Hsiu-Hau Lin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Carrier-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction plays an important role in itinerant magnetism. There have been intense interest on its general trend on bipartite lattice with particle-hole symmetry. In particular, recently fabricated graphene is well described by the honeycomb lattice within tight-binding approximation. We use SUSY quantum mechanics to study the RKKY interaction on bipartite lattices. The SUSY structure naturally differentiate the zero modes and those paired states at finite energies. The significant role of zero modes is largely ignored in previous literature because their measure is often zero in the thermodynamic limit. Employing both real-time and imaginary-time formalism, we arrive at the same conclusion: The RKKY interaction for impurity spins on different sublattices is always antiferromagnetic. However, for impurity spins on the same sublattice, the carrier-mediated RKKY interaction is not always ferromagnetic. Only in the absence of zero modes, the sign rule on the bipartite lattice holds true. Our finding highlight the importance of the zero modes in bipartite lattices. Their significance needs further investigation and may lead to important advances in carrier-mediated magnetism.



rate research

Read More

Undoped GaAs/AlGaAs heterostructures have been used to fabricate quantum wires in which the average impurity separation is greater than the device size. We compare the behavior of the Zero-Bias Anomaly against predictions from Kondo and spin polarization models. Both theories display shortcomings, the most dramatic of which are the linear electron-density dependence of the Zero-Bias Anomaly spin-splitting at fixed magnetic field B and the suppression of the Zeeman effect at pinch-off.
We propose an RKKY-type interaction that is mediated by a spin liquid. If a spin liquid ground state exists such an interaction could leave a fingerprint by ordering underlying localized moments such as nuclear spins. This interaction has a unique phenomenology that is distinct from the RKKY interaction found in fermionic systems; most notably the lack of a Fermi surface and absence of the requirement for itinerant electrons, since most spin liquids are insulators. As a working example we investigate the two-dimensional spin-1/2 kagome antiferromagnet (KAFM), although the treatment remains general and can be extended to other spin liquids and dimensions. We find that several different nuclear spin orderings minimize the RKKY-type energy induced by the KAFM but are unstable due to a zero-energy flat magnon band. Despite this we show that a small magnetic field is able to gap out this magnon spectrum for some of the orderings resulting in an intricate nuclear magnetism.
Topological flat bands, such as the band in twisted bilayer graphene, are becoming a promising platform to study topics such as correlation physics, superconductivity, and transport. In this work, we introduce a generic approach to construct two-dimensional (2D) topological quasi-flat bands from line graphs and split graphs of bipartite lattices. A line graph or split graph of a bipartite lattice exhibits a set of flat bands and a set of dispersive bands. The flat band connects to the dispersive bands through a degenerate state at some momentum. We find that, with spin-orbit coupling (SOC), the flat band becomes quasi-flat and gapped from the dispersive bands. By studying a series of specific line graphs and split graphs of bipartite lattices, we find that (i) if the flat band (without SOC) has inversion or $C_2$ symmetry and is non-degenerate, then the resulting quasi-flat band must be topologically nontrivial, and (ii) if the flat band (without SOC) is degenerate, then there exists an SOC potential such that the resulting quasi-flat band is topologically nontrivial. This generic mechanism serves as a paradigm for finding topological quasi-flat bands in 2D crystalline materials and meta-materials.
We theoretically investigate the features of Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction between two magnetic impurities, mediated by the interfacial bound states inside a domain wall (DW). The latter separates the two regions with oppositely signed inversion symmetry broken terms in graphene and Weyl semimetal. The DW is modelled by a smooth quantum well which hosts a number of discrete bound states including a pair of gapless, metallic zero-energy modes with opposite chiralities. We find clear signatures of these interfacial chiral bound states in spin response (RKKY exchange interaction) which is robust to the deformation of the quantum well.
108 - R. Egger , A.O. Gogolin 2001
We compute the tunneling density of states of doped multi-wall nanotubes including disorder and electron-electron interactions. A non-conventional Coulomb blockade reflecting nonperturbative Altshuler-Aronov-Lee power-law zero-bias anomalies is found, in accordance with recent experimental results. The presence of a boundary implies a universal doubling of the boundary exponent in the diffusive limit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا