No Arabic abstract
The study of electromagnetic and weak form factors of nucleon (charged quasielastic scatterings of neutrino (antineutrino) and nucleon) done in $70^prime s$ and published in Chinese journals is reviewed. In the approach of the study antiquark components are introduced to the wave functions of nucleon and the study shows that the antiquark components of nucleon play an essential role in the EM and weak form factors of nucleon. The SU(6) symmetric wave functions of baryons in the rest frame ( s-wave in the rest frame) have been constructed. In these wave functions there are both quark and antiquark components. Using Lorentz transformations these wave functions are boosted to moving frame. In terms of effective Lagrangian these wave functions are used to study the EM and weak form factors of nucleon and $p rightarrow Delta$. The ratio $mu_p G^p_E/G^p_M$, $G^n_E$, $G^n_M$, $G^*_M$, $E1+$ and $S1+$ of $p rightarrow Delta$ are predicted. The axial-vector form factors of nucleon is predicted to be $G_A(q^2)/G_A(0) = F^p_1(q^2)$, where the $F^p_1$ is the first Dirac form factor of proton. This prediction agrees with data very well. The pseudoscalar form factor of nucleon is predicted. The model predicts there are three axial-form factors for $prightarrowDelta$ and two of them play dominant roles. The cross sections of $ u_mu + n rightarrow p + mu^-;;bar{ u}_mu + p rightarrow n + mu^+$, $Delta S = 1$ quasielastic neutrino scatterings, and $ u_mu + p rightarrow Delta^{++} + mu^-$ are predicted. Theoretical results are in agreement with data. The study shows that antiquark components of baryons play an essential role in understanding nucleon structure.
We study the scattering of neutrinos on polarized and unpolarized free nucleons, and also the polarization of recoil particles in these scatters. In contrast to electromagnetic processes, the parity-violating weak interaction gives rise to large spin asymmetries at leading order. Future polarization measurements could provide independent access to the proton axial structure and allow the first extraction of the pseudoscalar form factor from neutrino data without the conventional partially conserved axial current (PCAC) ansatz and assumptions about the pion-pole dominance. The pseudoscalar form factor can be accessed with precise measurements with muon (anti)neutrinos of a few hundreds $mathrm{MeV}$ of energy or with tau (anti)neutrinos. The axial form factor can be extracted from scattering measurements using accelerator neutrinos of all energies.
The fomalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit.
The nucleon electromagnetic form factors are calculated in light cone QCD sum rules framework using the most general form of the nucleon interpolating current. Using two forms of the distribution amplitudes (DAs), predictions for the form factors are presented and compared with existing experimental data. It is shown that our results describe remarkably well the existing experimental data.
By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on $^2H$ and $^3He$) important experimental insights have recently been gained into the flavor compositions of nucleon electromagnetic form factors. We report on testing the Graz Goldstone-boson-exchange relativistic constituent-quark model in comparison to the flavor contents in low-energy nucleons, as revealed from electron-scattering phenomenology. It is found that a satisfactory agreement is achieved between theory and experiment for momentum transfers up to $Q^2sim$ 4 GeV$^2$, relying on three-quark configurations only. Analogous studies have been extended to the $Delta$ and the hyperon electromagnetic form factors. For them we here show only some sample results in comparison to data from lattice quantum chromodynamics.
The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the understanding of the sea quark dynamics. We determine the strange electromagnetic form factors of the nucleon within the lattice formulation of Quantum Chromodynamics using simulations that include light, strange and charm quarks in the sea all tuned to their physical mass values. We employ state-of-the-art techniques to accurately extract the form factors for values of the momentum transfer square up to 0.8~GeV$^2$. We find that both the electric and magnetic form factors are statistically non-zero. We obtain for the strange magnetic moment $mu^s=-0.017(4)$, the strange magnetic radius $langle r^2_M rangle^s=-0.015(9)$~fm$^2$, and the strange charge radius $langle r^2_E rangle^s=-0.0048(6)$~fm$^2$.