Do you want to publish a course? Click here

Impact of the initial size of spatial fluctuations on the collective flow in Pb-Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV

296   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The Parton-Hadron-String-Dynamics (PHSD) transport model is used to study the influence of the initial size of spatial fluctuations of the interacting system on flow observables in Pb-Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV for different centralities. While the flow coefficients $v_2$, $v_3$, $v_4$ and $v_5$ are reasonably described in comparison to the data from the ALICE Collaboration for different centralities within the default setting, no essential sensitivity is found with respect to the initial size of spatial fluctuations even for very central collisions where the flow coefficients are dominated by the size of initial state fluctuations. We attribute this lack of sensitivity partly to the low interaction rate of the degrees-of-freedom in this very early phase of order $sim$ 0.3 fm/c which is also in common with the weakly interacting color glass condensate (CGC) or glasma approach. Moreover, since the event shape in the transverse plane is approximately the same for different size of spatial fluctuations very similar eccentricities $epsilon_n$ are transformed to roughly the same flow coefficients $v_n$ in momentum space.



rate research

Read More

A simple approach based on the separation of wounded nucleons in an A-A collision in two categories, those suffering single collisions - corona and the rest - core, estimated within a Glauber Monte-Carlo approach, explains the centrality dependence of the light flavor hadrons production in Pb-Pb collisions at $sqrt{s_{NN}}$=2.76 TeV. The core contribution does not include any dependence of any process on the fireball shape as a function of the impact parameter. Therefore, the ratios of the $p_T$ distributions to the one corresponding to the minimum bias pp collisions at the same energy, each of them normalised to the corresponding charged particle density, the $langle p_Trangle$ and transverse energy per unit of rapidity are reproduced less accurate by such an approach. The results show that the corona contribution plays an important role also at LHC energies and it has to be considered in order to evidence the centrality dependence of different observables related to the core properties and dynamics.
We analyze the elliptic flow parameter v_2 in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV and in Au+Au collisions at sqrt{s_{NN}} =200 GeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a state-of-the-art lattice QCD equation of state, and the subsequent hadronic stage by a hadron cascade model. For initial conditions, we employ Monte-Car
We predict the elliptic flow parameter v_2 in U+U collisions at sqrt{s_{NN}}=200 GeV and in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a state-of-the-art lattice QCD equation of state, and the subsequent hadronic stage by a hadron cascade model.
Separation of charges along the extreme magnetic field created in non-central relativistic heavy--ion collisions is predicted to be a signature of local parity violation in strong interactions. We report on results for charge dependent two particle azimuthal correlations with respect to the reaction plane for Pb--Pb collisions at $sqrt{s_{NN}} = 2.76$ TeV recorded in 2010 with ALICE at the LHC. The results are compared with measurements at RHIC energies and against currently available model predictions for LHC. Systematic studies of possible background effects including comparison with conventional (parity-even) correlations simulated with Monte Carlo event generators of heavy--ion collisions are also presented.
In this paper, we study and predict flow observables in 2.76 A TeV and 5.02 A TeV Pb +Pb collisions, using the iEBE-VISHNU hybrid model with TRENto and AMPT initial conditions and with different forms of the QGP transport coefficients. With properly chosen and tuned parameter sets, our model calculations can nicely describe various flow observables in 2.76 A TeV Pb +Pb collisions, as well as the measured flow harmonics of all charged hadrons in 5.02 A TeV Pb +Pb collisions. We also predict other flow observables, including $v_n(p_T)$ of identified particles, event-by-event $v_n$ distributions, event-plane correlations, (Normalized) Symmetric Cumulants, non-linear response coefficients and $p_T$-dependent factorization ratios, in 5.02 A TeV Pb+Pb collisions. We find many of these observables remain approximately the same values as the ones in 2.76 A TeV Pb+Pb collisions. Our theoretical studies and predictions could shed light to the experimental investigations in the near future.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا