The phase diagram of two-color QCD with a chiral chemical potential is studied on the lattice. The focus is on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulations are carried out with dynamical staggered fermions without rooting. The dependence of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented.
In preparation of lattice studies of the two-color QCD phase diagram we study chiral restoration and deconfinement at finite temperature with two flavors of staggered quarks using an RHMC algorithm on GPUs. We first study unquenching effects in local Polyakov loop distributions, and the Polyakov loop potential obtained via Legendre transformation, in a fixed-scale approach for heavier quarks. We also present the chiral condensate and the corresponding susceptibility over the lattice coupling across the chiral transition for lighter quarks. Using Ferrenberg-Swendsen reweighting we extract the maxima of the chiral susceptibility in order to determine pseudo-critical couplings on various lattices suitable for chiral extrapolations. These are then used to fix the relation between coupling and temperature in the chiral limit.
In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of the massive Dirac operator, a leading-order reweighting and a spline Monte-Carlo fit. Our main results concern the phase transition boundary between the normal and the pion condensation phases and the chiral/deconfinement transition temperature as a function of the chemical potential. In addition, we perform a quantitative comparison between our direct results and a Taylor-expansion obtained at zero chemical potential to assess the applicability range of the latter.
We investigate chemical-potential (mu) dependence of static-quark free energies in both the real and imaginary mu regions, performing lattice QCD simulations at imaginary mu and extrapolating the results to the real mu region with analytic continuation. Lattice QCD calculations are done on a 16^{3}times 4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action. Static-quark potential is evaluated from the Polyakov-loop correlation functions in the deconfinement phase. As the analytic continuation, the potential calculated at imaginary mu=imu_{rm I} is expanded into a Taylor-expansion series of imu_{rm I}/T up to 4th order and the pure imaginary variable imu_{rm I}/T is replaced by the real one mu_{rm R}/T. At real mu, the 4th-order term weakens mu dependence of the potential sizably. At long distance, all of the color singlet and non-singlet potentials tend to twice the single-quark free energy, indicating that the interactions between heavy quarks are fully color-screened for finite mu. For both real and imaginary mu, the color-singlet q{bar q} and the color-antitriplet qq interaction are attractive, whereas the color-octet q{bar q} and the color-sextet qq interaction are repulsive. The attractive interactions have stronger mu/T dependence than the repulsive interactions. The color-Debye screening mass is extracted from the color-singlet potential at imaginary mu, and the mass is extrapolated to real mu by analytic continuation. The screening mass thus obtained has stronger mu dependence than the prediction of the leading-order thermal perturbation theory at both real and imaginary mu.
We study a recently proposed formulation of overlap fermions at finite density. In particular we compute the energy density as a function of the chemical potential and the temperature. It is shown that overlap fermions with chemical potential reproduce the correct continuum behavior.
The order of the thermal phase transition in the chiral limit of Quantum Chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse $N_t=4$ lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass $m_pi^capprox 560$ MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavour QCD using improved Wilson fermions and indicate that the systematic error on the two-flavour chiral transition is still of order 100%.