No Arabic abstract
We reinvestigate numerically the classic problem of two-dimensional superfluid flow past an obstacle. Taking the obstacle to be elongated (perpendicular to the flow), rather than the usual circular form, is shown to promote the nucleation of quantized vortices, enhance their subsequent interactions, and lead to wakes which bear striking similarity to their classical (viscous) counterparts. Then, focussing on the recent experiment of Kwon et al. (arXiv:1403.4658) in a trapped condensate, we show that an elliptical obstacle leads to a cleaner and more efficient means to generate two-dimensional quantum turbulence.
We show that an elliptical obstacle moving through a Bose-Einstein condensate generates wakes of quantum vortices which resemble those of classical viscous flow past a cylinder or sphere. The role of ellipticity is to facilitate the interaction of the vortices nucleated by the obstacle. Initial steady symmetric wakes lose their symmetry and form clusters of like-signed vortices, in analogy to the classical Benard-von Karman vortex street. Our findings, demonstrated numerically in both two and three dimensions, confirm the intuition that a sufficiently large number of quanta of circulation reproduce classical physics.
We investigate the flow of a one-dimensional nonlinear Schrodinger model with periodic boundary conditions past an obstacle, motivated by recent experiments with Bose--Einstein condensates in ring traps. Above certain rotation velocities, localized solutions with a nontrivial phase profile appear. In striking difference from the infinite domain, in this case there are many critical velocities. At each critical velocity, the steady flow solutions disappear in a saddle-center bifurcation. These interconnected branches of the bifurcation diagram lead to additions of circulation quanta to the phase of the associated solution. This, in turn, relates to the manifestation of persistent current in numerous recent experimental and theoretical works, the connections to which we touch upon. The complex dynamics of the identified waveforms and the instability of unstable solution branches are demonstrated.
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.
We present experimental results and a systematic theoretical analysis of dark-br ight soliton interactions and multiple-dark-bright soliton complexes in atomic t wo-component Bose-Einstein condensates. We study analytically the interactions b etween two-dark-bright solitons in a homogeneous condensate and, then, extend ou r considerations to the presence of the trap. An effective equation of motion is derived for the dark-bright soliton center and the existence and stability of stationary two-dark-bright soliton states is illustrated (with the bright components being either in- or out-of-phase). The equation of motion provides the characteristic oscillation frequencies of the solitons, in good agreement with the eigenfrequencies of the anomalous modes of the system.
Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. However, there is no study of SOC atomic-molecular BECs so far. Here, we find a novel way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin dependent photoassociation and Raman coupling, which can control the formation and distribution of a new type of topological excitation -- carbon-dioxide-like Skyrmion. This Skyrmion is formed by two half-Skyrmions of molecular BECs coupling with one Skyrmion of atomic BECs, where the two half-Skyrmions locates at both sides of one Skyrmion, which can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments.