Do you want to publish a course? Click here

Interplay between heartbeat oscillations and wind outflow in microquasar IGR J17091-3624

113   0   0.0 ( 0 )
 Added by Agnieszka Janiuk
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

During the bright outburst in 2011, the black hole candidate IGR J17091-3624 exhibited strong quasi-periodic flare-like events (on timescales of tens of seconds) in some characteristic states, the so-called heartbeat state. From the theoretical point of view, these oscillations may be modeled by the process of accretion disk instability, driven by the dominant radiation pressure and enhanced heating of the plasma. Although the mean accretion rate in this source is probably below the Eddington limit, the oscillations will still have large amplitudes. As the observations show, the source can exhibit strong wind outflow during the soft state. This wind may help to partially or even completely stabilize the heartbeat. Using our hydrodynamical code GLADIS, we modeled the evolution of an accretion disk responsible for X-ray emission of the source. We accounted for a variable wind outflow from the disk surface. We examined the data archive from the Chandra and XMM-Newton satellites to find the observed limitations on the wind physical properties, such as its velocity and ionization state. We also investigated the long-term evolution of this source, which lasted over about 600 days of observations, using the data collected by the Swift and RXTE satellites. During this long period, the oscillations pattern and the observable wind properties changed systematically. We found that this source probably exhibits observable outbursts of appropriate timescales and amplitudes as a result of the disk instability. Our model requires a substantial wind component to explain the proper variability pattern, and even complete suppression of flares in some states. The wind mass-loss rate extracted from the data agrees quantitatively well with our scenario.



rate research

Read More

IGR J17091--3624 is a transient galactic black hole which has a distinct quasi-periodic variability known as `heartbeat, similar to the one observed in GRS 1915+105. In this paper, we report the results of $sim 125$ ks textit{AstroSat} observations of this source during the 2016 outburst. For the first time a double peaked QPO (DPQ) is detected in a few time segments of this source with a difference of $delta f ~sim12$ mHz between the two peaks. The nature of the DPQ was studied based on hardness ratios and using the static as well as the dynamic power spectrum. Additionally, a low frequency (25--48 mHz) `heartbeat single peak QPO (SPQ) was observed at different intervals of time along with harmonics ($50-95$ mHz). Broadband spectra in the range $0.7-23$ keV, obtained with textit{SXT} and textit{LAXPC}, could be fitted well with combination of a thermal Comptonisation and a multicolour disc component model. During textit{AstroSat} observation, the source was in the Soft-Intermediate State (SIMS) as observed with textit{Swift/XRT}. We present a comparative study of the `heartbeat state variability in IGR J17091--3624 with GRS 1915+105. Significant difference in the timing properties is observed although spectral parameters ($Gammasim2.1-2.4$ and $T_mathrm{max}sim0.6-0.8$ keV) in the broad energy band remain similar. Spectral properties of segments exhibiting SPQ and DPQ are further studied using simple phase resolved spectroscopy which does not show a significant difference. Based on the model parameters, we obtain the maximum ratio of mass accretion rate in GRS 1915+105 to that in IGR J17091--3624 as $sim25:1$. We discuss the implications of our findings and comment on the physical origin of these exotic variabilities.
{it Chandra} spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk--dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized, dense, and to have typical velocities of $sim$1000 km/s or less projected along our line of sight. Here, we present an analysis of two {it Chandra} High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091$-$3624 and contemporaneous EVLA radio observations, obtained in 2011. The second {it Chandra} observation reveals an absorption line at 6.91$pm$0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of $9300^{+500}_{-400}$ km/s (0.03$c$, or the escape velocity at 1000 R$_{Schw}$). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of $sim 14600$ km/s (0.05$c$), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091$-$3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our {it Chandra} observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems.
We report the discovery of 8.5 sigma high-frequency quasi-periodic oscillations (HFQPOs) at 66 Hz in the RXTE data of the black hole candidate IGR J17091-3624, a system whose X-ray properties are very similar to those of microquasar GRS 1915+105. The centroid frequency of the strongest peak is ~66 Hz, its quality factor above 5 and its rms is between 4 and 10%. We found a possible additional peak at 164 Hz when selecting a subset of data; however, at 4.5 sigma level we consider this detection marginal. These QPOs have hard spectrum and are stronger in observations performed between September and October 2011, during which IGR J17091-3624 displayed for the first time light curves which resemble those of the gamma variability class in GRS 1915+105. We find that the 66 Hz QPO is also present in previous observations (4.5 sigma), but only when averaging ~235 ksec of relatively high count rate data. The fact that the HFQPOs frequency in IGR J17091-3624 matches surprisingly well that seen in GRS 1915+105 raises questions on the mass scaling of QPOs frequency in these two systems. We discuss some possible interpretations, however, they all strongly depend on the distance and mass of IGR J17091-3624, both completely unconstrained today.
We report on the first 180 days of RXTE observations of the outburst of the black hole candidate IGR J17091-3624. This source exhibits a broad variety of complex light curve patterns including periods of strong flares alternating with quiet intervals. Similar patterns in the X-ray light curves have been seen in the (up to now) unique black hole system GRS 1915+105. In the context of the variability classes defined by Belloni et al. (2000) for GRS 1915+105, we find that IGR J17091-3624 shows the u, rho, alpha, lambda, beta and mu classes as well as quiet periods which resemble the chi class, all occurring at 2-60 keV count rate levels which can be 10-50 times lower than observed in GRS 1915+105. The so-called rho class heartbeats occur as fast as every few seconds and as slow as ~100 seconds, tracing a loop in the hardness-intensity diagram which resembles that previously seen in GRS 1915+105. However, while GRS 1915+105 traverses this loop clockwise, IGR J17091-3624 does so in the opposite sense. We briefly discuss our findings in the context of the models proposed for GRS 1915+105 and find that either all models requiring near Eddington luminosities for GRS 1915+105-like variability fail, or IGR J17091-3624 lies at a distance well in excess of 20 kpc or, it harbors one of the least massive black holes known (< 3 M_sun).
Galactic black hole candidates GRS 1915+105 and IGR J17091-3624 have many similarities in their light curves and spectral properties. However, very little is known about the orbital elements of their companions. In case the orbits are eccentric, tidal forces by the black hole on the companion can cause modulations of accretion rates in orbital time scale. We look for these modulations in the light curves of these two objects and find that their periodicities are around 28.3 d (29.0 d) and 32.2 d respectively. Eccentricities are at the most 0.071 and 0.46 respectively. We conclude that both these objects have long orbital periods and are eccentric. This could be a reason why light curves have several similar variability class transitions as reported in the literature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا