Whack-A-Mole Model: Towards unified description of biological effect caused by radiation-exposure


Abstract in English

We present a novel model to estimate biological effects caused by artificial radiation exposure, Whack-a-mole (WAM) model. It is important to take account of the recovery effects during the time course of the cellular reactions. The inclusion of the dose-rate dependence is essential in the risk estimation of low dose radiation, while nearly all the existing theoretical models relies on the total dose dependence only. By analyzing the experimental data of the relation between the radiation dose and the induced mutation frequency of 5 organisms, mouse, drosophila, chrysanthemum, maize and tradescantia, we found that all the data can be reproduced by WAM model. Most remarkably, a scaling function, which is derived from WAM model, consistently accounts for the observed mutation frequencies of 5 organisms. This is the first rationale to account for the dose rate dependence as well as to give a unified understanding of a general feature of organisms.

Download