Do you want to publish a course? Click here

Order by Disorder and by Doping in Quantum Hall Valley Ferromagnets

129   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the Si(111) multi-valley quantum Hall system and show that it exhibits an exceptionally rich interplay of broken symmetries and quantum Hall ordering already near integer fillings $ u$ in the range $ u=0-6$. This six-valley system has a large $[SU(2)]^3rtimes D_3$ symmetry in the limit where the magnetic length is much larger than the lattice constant. We find that the discrete ${D}_3$ factor breaks over a broad range of fillings at a finite temperature transition to a discrete nematic phase. As $T rightarrow 0$ the $[SU(2)]^3$ continuous symmetry also breaks: completely near $ u =3$, to a residual $[U(1)]^2times SU(2)$ near $ u=2$ and $4$ and to a residual $U(1)times [SU(2)]^2$ near $ u=1$ and $5$. Interestingly, the symmetry breaking near $ u=2,4$ and $ u=3$ involves a combination of selection by thermal fluctuations known as order by disorder and a selection by the energetics of Skyrme lattices induced by moving away from the commensurate fillings, a mechanism we term order by doping. We also exhibit modestly simpler analogs in the four-valley Si(110) system.



rate research

Read More

The high Curie temperature multiferroic compound, CuO, has a quasidegenerate magnetic ground state that makes it prone to manipulation by the so called ``order-by-disorder mechanism. First principle computations supplemented with Monte Carlo simulations and experiments show that isovalent doping allows to stabilize the multiferroic phase in non-ferroelectric regions of the pristine material phase-diagram with experiments reaching a 250% widening of the ferroelectric temperature window with 5% of Zn doping. Our results allow to validate the importance of a quasidegenerate ground state on promoting multiferroicity on CuO at high temperatures and open a path to the material engineering of new multiferroic materials.
Motivated by recent neutron scattering experiments, we derive and study an effective pseudo-dipolar spin-1/2 model for the XY pyrochlore antiferromagnet Er2Ti2O7. While a bond-dependent in-plane exchange anisotropy removes any continuous symmetry, it does lead to a one-parameter `accidental classical degeneracy. This degeneracy is lifted by quantum fluctuations in favor of the non-coplanar spin structure observed experimentally -- a rare experimental instance of quantum order by disorder. A non-Goldstone low-energy mode is present in the excitation spectrum in accordance with inelastic neutron scattering data. Our theory also resolves the puzzle of the experimentally observed continuous ordering transition, absent from previous models.
In the first part of this paper, we study the spin-S Kitaev model using spin wave theory. We discover a remarkable geometry of the minimum energy surface in the N-spin space. The classical ground states, called Cartesian or CN-ground states, whose number grows exponentially with the number of spins N, form a set of points in the N-spin space. These points are connected by a network of flat valleys in the N-spin space, giving rise to a continuous family of classical ground states. Further, the CN-ground states have a correspondence with dimer coverings and with self avoiding walks on a honeycomb lattice. The zero point energy of our spin wave theory picks out a subset from a continuous family of classically degenerate states as the quantum ground states; the number of these states also grows exponentially with N. In the second part, we present some exact results. For arbitrary spin-S, we show that localized Z_2 flux excitations are present by constructing plaquette operators with eigenvalues pm 1 which commute with the Hamiltonian. This set of commuting plaquette operators leads to an exact vanishing of the spin-spin correlation functions, beyond nearest neighbor separation, found earlier for the spin-1/2 model [G. Baskaran, S. Mandal and R. Shankar, Phys. Rev. Lett. 98, 247201 (2007)]. We introduce a generalized Jordan-Wigner transformation for the case of general spin-S, and find a complete set of commuting link operators, similar to the spin-1/2 model, thereby making the Z_2 gauge structure more manifest. The Jordan-Wigner construction also leads, in a natural fashion, to Majorana fermion operators for half-integer spin cases and hard-core boson operators for integer spin cases, strongly suggesting the presence of Majorana fermion and boson excitations in the respective low energy sectors.
Here we establish the systematic existence of a U(1) degeneracy of all symmetry-allowed Hamiltonians quadratic in the spins on the pyrochlore lattice, at the mean-field level. By extracting the Hamiltonian of Er2Ti2O7 from inelastic neutron scattering measurements, we then show that the U(1)-degenerate states of Er2Ti2O7 are its classical ground states, and unambiguously show that quantum fluctuations break the degeneracy in a way which is confirmed by experiment. This is the first definitive observation of order-by-disorder in any material. We provide further verifiable consequences of this phenomenon, and several additional comparisons between theory and experiment.
Two-dimensional electron gases in strong magnetic fields provide a canonical platform for realizing a variety of electronic ordering phenomena. Here we review the physics of one intriguing class of interaction-driven quantum Hall states: quantum Hall valley nematics. These phases of matter emerge when the formation of a topologically insulating quantum Hall state is accompanied by the spontaneous breaking of a point-group symmetry that combines a spatial rotation with a permutation of valley indices. The resulting orientational order is particularly sensitive to quenched disorder, while quantum Hall physics links charge conduction to topological defects. We discuss how these combine to yield a rich phase structure, and their implications for transport and spectroscopy measurements. In parallel, we discuss relevant experimental systems. We close with an outlook on future directions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا