Do you want to publish a course? Click here

Spitzer observations of SN 2014J and properties of mid-IR emission in Type Ia supernovae

193   0   0.0 ( 0 )
 Added by Joel Johansson
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

SN 2014J in M82 is the closest Type Ia supernova (SN Ia) in decades. The proximity allows for detailed studies of supernova physics and provides insights into the circumstellar and interstellar environment. In this work we analyze Spitzer mid-IR data of SN 2014J in the 3.6 and 4.5 {mu}m wavelength range, together with several other nearby and well-studied SNe Ia. We compile the first composite mid-IR light-curve templates from our sample of SNe~Ia, spanning the range from before peak brightness well into the nebular phase. Our observations indicate that SNe Ia form a very homogeneous class of objects at these wavelengths. Using the low-reddening supernovae for comparison, we constrain possible thermal emission from circumstellar dust around the highly reddened SN 2014J. We also study SNe 2006X and 2007le, where the presence of matter in the circumstellar environment has been suggested. No significant mid-IR excess is detected, allowing us to place upper limits on the amount of pre-existing dust in the circumstellar environment. For SN 2014J, $M_{dust} < 10^{-5}$ M$_{odot}$ within $r_{dust} sim 10^{17}$ cm, which is insufficient to account for the observed extinction. Similar limits are obtained for SNe 2006X and 2007le.



rate research

Read More

We present a time series of 8 - 13 $mu$m spectra and photometry for SN 2014J obtained 57, 81, 108, and 137 d after the explosion using CanariCam on the Gran Telescopio Canarias. This is the first mid-IR time series ever obtained for a Type Ia supernova. These observations can be understood within the framework of the delayed detonation model and the production of $sim$0.6 $rm M_odot$ of $^{56}$Ni, consistent with the observed brightness, the brightness decline relation, and the $gamma$-ray fluxes. The [Co III] line at 11.888 $mu$m is particularly useful for evaluating the time evolution of the photosphere and measuring the amount of $^{56}$Ni and thus the mass of the ejecta. Late-time line profiles of SN 2014J are rather symmetric and not shifted in the rest frame. We see Argon emission, which provides a unique probe of mixing in the transition layer between incomplete burning and nuclear statistical equilibrium. We may see [Fe III] and [Ni IV] emission, both of which are observed to be substantially stronger than indicated by our models. If the latter identification is correct, then we are likely observing stable Ni, which might imply central mixing. In addition, electron capture, also required for stable Ni, requires densities larger than $sim$$1 times 10^9$ g cm$^{-3}$, which are expected to be present only in white dwarfs close to the Chandrasekhar limit. This study demonstrates that mid-IR studies of Type Ia supernovae are feasible from the ground and provide unique information, but it also indicates the need for better atomic data.
We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and twenty-three NIR spectra were obtained from 10 days before ($-$10d) to 10 days after (+10d) the time of maximum $B$-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify CI $lambda$ 1.0693 in the NIR spectra. We find that MgII lines with high oscillator strengths have higher initial velocities than other MgII lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for OI, MgII, SiII, SII, CaII and FeII suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from $-$10d to +29d, in the $UBVRIJH$ and $K_s$ bands. SN 2014J is about 3 magnitudes fainter than a normal SN Ia at the distance of M82, which we attribute to extinction in the host. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using $R_V$ = 1.46, which is consistent with previous studies, SNooPy finds that $A_V = 1.80$ for $E(B-V)_{host}=1.23 pm 0.01$ mag. The maximum $B$-band brightness of $-19.19 pm 0.10$ mag was reached on February 1.74 UT $ pm 0.13$ days and the supernova had a decline parameter of $Delta m_{15}=1.11 pm 0.02$ mag.
86 - Kaicheng Zhang 2018
We present extensive spectroscopic observations for one of the closest type Ia supernovae (SNe Ia), SN 2014J discovered in M82, ranging from 10.4 days before to 473.2 days after B-band maximum light. The diffuse interstellar band (DIB) features detected in a high-resolution spectrum allow an estimate of line-of-sight extinction as Av=1.9+/-0.6 mag. Spectroscopically, SN 2014J can be put into the high-velocity (HV) subgroup in Wangs classification with a velocity of Si~II 6355 at maximum light as about 12200 km/s, but has a low velocity gradient (LVG, following Benettis classification) as 41+/-2 km/s/day, which is inconsistent with the trend that HV SNe Ia generally have larger velocity gradients. We find that the HV SNe Ia with LVGs tend to have relatively stronger Si III (at ~4400 Angstrom) absorptions in early spectra, larger ratios of S II 5468 to S II 5640, and weaker Si II 5972 absorptions compared to their counterparts with similar velocities but high velocity gradients. This shows that the HV+LVG subgroup of SNe Ia may have intrinsically higher photospheric temperature, which indicates that their progenitors may experience more complete burning in the explosions relative to the typical HV SNe Ia.
563 - Laura Chomiuk 2013
SN 2011fe is the nearest supernova of Type Ia (SN Ia) discovered in the modern multi-wavelength telescope era, and it also represents the earliest discovery of a SN Ia to date. As a normal SN Ia, SN 2011fe provides an excellent opportunity to decipher long-standing puzzles about the nature of SNe Ia. In this review, we summarize the extensive suite of panchromatic data on SN 2011fe, and gather interpretations of these data to answer four key questions: 1) What explodes in a SN Ia? 2) How does it explode? 3) What is the progenitor of SN 2011fe? and 4) How accurate are SNe Ia as standardizeable candles? Most aspects of SN 2011fe are consistent with the canonical picture of a massive CO white dwarf undergoing a deflagration-to-detonation transition. However, there is minimal evidence for a non-degenerate companion star, so SN 2011fe may have marked the merger of two white dwarfs.
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا