Suppression of the scalar power spectrum on large scales is one way to reconcile the tension between Planck and BICEP2 data. This suppression can occur by introducing a phase transition from the fast-roll phase to the slow-roll phase in a single field inflation model. In this paper we consider a deformed single field inflation model in terms of three SO(3) symmetric moduli fields. We find that spatially linear solutions for the moduli fields induces a phase transition during the early stage of the inflation and the suppression of scalar power spectrum at large scale perturbation modes.
We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are the dominant during the inflationary phase of the universe. The resulting metric in this limit is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective 4D Schwarzschild-de Sitter spacetime on cosmological scales, which is obtained after we make a static foliation on the non-compact extra coordinate. Our results show how the squared metric fluctuations of the primordial universe become scale invariant with the inflationary expansion.
We discuss a special class of quantum gravity phenomena that occur on the scale of the Universe as a whole at any stage of its evolution. These phenomena are a direct consequence of the zero rest mass of gravitons, conformal non-invariance of the graviton field, and one-loop finiteness of quantum gravity. The effects are due to graviton-ghost condensates arising from the interference of quantum coherent states. Each of coherent states is a state of gravitons and ghosts of a wavelength of the order of the horizon scale and of different occupation numbers. The state vector of the Universe is a coherent superposition of vectors of different occupation numbers. To substantiate the reliability of macroscopic quantum effects, the formalism of one-loop quantum gravity is discussed in detail. The theory is constructed as follows: Faddeev-Popov path integral in Hamilton gauge -> factorization of classical and quantum variables, allowing the existence of a self-consistent system of equations for gravitons, ghosts and macroscopic geometry -> transition to the one-loop approximation. The ghost sector corresponding to the Hamilton gauge ensures of one-loop finiteness of the theory off the mass shell. The Bogolyubov-Born-Green-Kirckwood-Yvon (BBGKY) chain for the spectral function of gravitons renormalized by ghosts is used to build a self-consistent theory of gravitons in the isotropic Universe. We found three exact solutions of the equations, consisting of BBGKY chain and macroscopic Einsteins equations. The solutions describe virtual graviton, ghost, and instanton condensates and are reproduced at the level of exact solutions for field operators and state vectors. Each exact solution corresponds to a certain phase state of graviton-ghost substratum. We establish conditions under which a continuous quantum-gravity phase transitions occur between different phases of the graviton-ghost condensate.
In this paper, we extend our investigation of the validity of the cosmic no-hair conjecture within non-canonical anisotropic inflation. As a result, we are able to figure out an exact Bianchi type I solution to a power-law {it k}-inflation model in the presence of unusual coupling between scalar and electromagnetic fields as $-f^2(phi)F_{mu u}F^{mu u}/4$. Furthermore, stability analysis based on the dynamical system method indicates that the obtained solution does admit stable and attractive hairs during an inflationary phase and therefore violates the cosmic no-hair conjecture. Finally, we show that the corresponding tensor-to-scalar ratio of this model turns out to be highly consistent with the observational data of the Planck 2018.
Inspired by an interesting counterexample to the cosmic no-hair conjecture found in a supergravity-motivated model recently, we propose a multi-field extension, in which two scalar fields are allowed to non-minimally couple to two vector fields, respectively. This model is shown to admit an exact Bianchi type I power-law solution. Furthermore, stability analysis based on the dynamical system method is performed to show that this anisotropic solution is indeed stable and attractive if both scalar fields are canonical. Nevertheless, if one of the two scalar fields is phantom then the corresponding anisotropic power-law inflation turns unstable as expected.
Power suppression of the cosmic microwave background on the largest observable scales could provide valuable clues about the particle physics underlying inflation. Here we consider the prospect of power suppression in the context of the multifield landscape. Based on the assumption that our observable universe emerges from a tunnelling event and that the relevant features originate purely from inflationary dynamics, we find that the power spectrum not only contains information on single-field dynamics, but also places strong con- straints on all scalar fields present in the theory. We find that the simplest single-field models giving rise to power suppression do not generalise to multifield models in a straightforward way, as the resulting superhorizon evolution of the curvature perturbation tends to erase any power suppression present at horizon crossing. On the other hand, multifield effects do present a means of generating power suppression which to our knowledge has so far not been considered. We propose a mechanism to illustrate this, which we dub flume inflation.