No Arabic abstract
There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy between experiment and theory. Two new proposals -- at Fermilab and J-PARC -- plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.
A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic field; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.
We describe the installation, commissioning, and characterization of the new injection kicker system in the Muon $g-2$ Experiment (E989) at Fermilab, which makes a precision measurement of the muon magnetic anomaly. Three Blumlein pulsers drive each of the 1.27-m-long non-ferric kicker magnets, which reside in a storage ring vacuum (SRV) that is subjected to a 1.45 T magnetic field. The new system has been redesigned relative to Muon $g-2$s predecessor experiment, and we present those details in this manuscript.
Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and modern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.
The Muon $g-2$ experiment, E989, is currently taking data at Fermilab with the aim of reducing the experimental error on the muon anomaly by a factor of four and possibly clarifying the current discrepancy with the theoretical prediction. A central component of this four-fold improvement in precision is the laser calibration system of the calorimeters, which has to monitor the gain variations of the photo-sensors with a 0.04% precision on the short-term ($sim 1,$ms). This is about one order of magnitude better than what has ever been achieved for the calibration of a particle physics calorimeter. The system is designed to monitor also long-term gain variations, mostly due to temperature effects, with a precision below the per mille level. This article reviews the design, the implementation and the performance of the Muon $g-2$ laser calibration system, showing how the experimental requirements have been met.
The Muon g-2 Experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 parts per billion, which is a factor of four improvement over the previous E821 measurement at Brookhaven. The experiment will also extend the search for the electric dipole moment (EDM) of the muon by approximately two orders of magnitude, with a sensitivity down to $10^{-21}$ e.cm. Both of these measurements are made by combining a precise measurement of the 1.45T storage ring magnetic field with an analysis of the modulation of the decay rate of higher-energy positrons (from anti-muons), recorded by 24 calorimeters and 3 straw tracking detectors. The recent progress in the alignment of the electrostatic quadrapole plates and the trolley rails inside the vacuum chambers, and in establishing the uniform storage ring magnetic field will be described.