Do you want to publish a course? Click here

Compact Reflection-Type Phaser Using Quarter-Wavelength Transmission Line Resonators

116   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A compact reflection-type phaser composed of quarter-wavelength transmission line resonators interconnected by alternating K- and J-inverters is proposed. A design method is also presented. To validate this method, a 4th-order example is designed and fabricated. The proposed phaser is shown to exhibit the benefits of smaller size, easier fabrication and suppressed even-order harmonics compared with previously reported half-wavelength phasers.



rate research

Read More

We consider a novel method of cloaking objects from the surrounding electromagnetic fields in the microwave region. The method is based on transmission-line networks that simulate the wave propagation in the medium surrounding the cloaked object. The electromagnetic fields from the surrounding medium are coupled into the transmission-line network that guides the waves through the cloak thus leaving the cloaked object undetected. The cloaked object can be an array or interconnected mesh of small inclusions that fit inside the transmission-line network.
We report on the first use of laser ablation to make sub-millimeter, broad-band, anti-reflection coatings (ARC) based on sub-wavelength structures (SWS) on alumina and sapphire. We used a 515 nm laser to produce pyramid-shaped structures with pitch of about 320 $mu$m and total height of near 800 $mu$m. Transmission measurements between 70 and 140 GHz are in agreement with simulations using electromagnetic propagation software. The simulations indicate that SWS ARC with the fabricated shape should have a fractional bandwidth response of $Delta u / u_{center} = 0.55$ centered on 235 GHz for which reflections are below 3%. Extension of the bandwidth to both lower and higher frequencies, between few tens of GHz and few THz, should be straightforward with appropriate adjustment of laser ablation parameters.
302 - Hao Tian , Junqiu Liu , Bin Dong 2019
Microwave frequency acousto-optic modulation is realized by exciting high overtone bulk acoustic wave resonances (HBAR resonances) in the photonic stack. These confined mechanical stress waves transmit exhibit vertically transmitting, high quality factor (Q) acoustic Fabry Perot resonances that extend into the Gigahertz domain, and offer stress-optical interaction with the optical modes of the microresonator. Although HBAR are ubiquitously used in modern communication, and often exploited in superconducting circuits, this is the first time they have been incorporated on a photonic circuit based chip. The electro-acousto-optical interaction observed within the optical modes exhibits high actuation linearity, low actuation power and negligible crosstalk. Using the electro-acousto-optic interaction, fast optical resonance tuning is achieved with sub-nanosecond transduction time. By removing the silicon backreflection, broadband acoustic modulation at 4.1 and 8.7 GHz is realized with a 3 dB bandwidth of 250 MHz each. The novel hybrid HBAR nanophotonic platform demonstrated here, allowing on chip integration of micron-scale acoustic and photonic resonators, can find immediate applications in tunable microwave photonics, high bandwidth soliton microcomb stabilization, compact opto-electronic oscillators, and in microwave to optical conversion schemes. Moreover the hybrid platform allows implementation of momentum biasing, which allows realization of on chip non-reciprocal devices such as isolators or circulators and topological photonic bandstructures.
High-resolution multicolor printing based on pixelated optical nanostructures is of great importance for promoting advances in color display science. So far, most of the work in this field has been focused on achieving static colors, limiting many potential applications. This inevitably calls for the development of dynamic color displays with advanced and innovative functionalities. In this Letter, we demonstrate a novel dynamic color printing scheme using magnesium-based pixelated Fabry-Perot cavities by grey-scale nanolithography. With controlled hydrogenation and dehydrogenation, magnesium undergoes unique metal and dielectric transitions, enabling distinct blank and color states from the pixelated Fabry-Perot resonators. Following such a scheme, we first demonstrate dynamic Ishihara plates, in which the encrypted images can only be read out using hydrogen as information decoding key. We also demonstrate a new type of dynamic color generation, which enables fascinating transformations between black/white printing and color printing with fine tonal tuning. Our work will find wide-ranging applications in full-color printing and displays, colorimetric sensing, information encryption and anti-counterfeiting.
Several recent works have emphasized the role of spatial dispersion in wire media, and demonstrated that arrays of parallel metallic wires may behave very differently from a uniaxial local material with negative permittivity. Here, we investigate using local and non-local homogenization methods the effect of spatial dispersion on reflection from the mushroom structure introduced by Sievenpiper. The objective of the paper is to clarify the role of spatial dispersion in the mushroom structure and demonstrate that under some conditions it is suppressed. The metamaterial substrate, or metasurface, is modeled as a wire medium covered with an impedance surface. Surprisingly, it is found that in such configuration the effects of spatial dispersion may be nearly suppressed when the slab is electrically thin, and that the wire medium can be modeled very accurately using a local model. This result paves the way for the design of artificial surfaces that exploit the plasmonic-type response of the wire medium slab.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا