Embedding calculus knot invariants are of finite type


Abstract in English

We show that the map on components from the space of classical long knots to the n-th stage of its Goodwillie-Weiss embedding calculus tower is a map of monoids whose target is an abelian group and which is invariant under clasper surgery. We deduce that this map on components is a finite type-(n-1) knot invariant. We also compute the second page in total degree zero for the spectral sequence converging to the components of this tower as Z-modules of primitive chord diagrams, providing evidence for the conjecture that the tower is a universal finite-type invariant over the integers. Key to these results is the development of a group structure on the tower compatible with connect-sum of knots, which in contrast with the corresponding results for the (weaker) homology tower requires novel techniques involving operad actions, evaluation maps, and cosimplicial and subcubical diagrams.

Download