Do you want to publish a course? Click here

Observations of Cepheids with the MOST satellite: Contrast between Pulsation Modes

295   0   0.0 ( 0 )
 Added by Robert Szabo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantity and quality of satellite photometric data strings is revealing details in Cepheid variation at very low levels. Specifically, we observed a Cepheid pulsating in the fundamental mode and one pulsating in the first overtone with the Canadian MOST satellite. The 3.7-d period fundamental mode pulsator (RT Aur) has a light curve that repeats precisely, and can be modeled by a Fourier series very accurately. The overtone pulsator (SZ Tau, 3.1 d period) on the other hand shows light curve variation from cycle to cycle which we characterize by the variations in the Fourier parameters. We present arguments that we are seeing instability in the pulsation cycle of the overtone pulsator, and that this is also a characteristic of the O-C curves of overtone pulsators. On the other hand, deviations from cycle to cycle as a function of pulsation phase follow a similar pattern in both stars, increasing after minimum radius. In summary, pulsation in the overtone pulsator is less stable than that of the fundamental mode pulsator at both long and short timescales.



rate research

Read More

140 - L. Molnar , A. Derekas , R. Szabo 2017
The MOST space telescope observed four Cepheid variables so far, all of different subtypes. Here we summarize the results obtained and the possible ways to continue to study these stars.
109 - G. Bono , V.F. Braga (1 2020
We discuss the observed pulsation properties of Type II Cepheids (TIICs) in the Galaxy and Magellanic Clouds. The period (P) distributions, luminosity amplitudes and population ratios of the three different sub-groups (BL Herculis[BLH, P<5 days], W Virginis [WV, 5<P<20 days], RV Tauri [RVT, P>20 days]) are quite similar in different stellar systems, suggesting a common evolutionary channel and a mild dependence on both metallicity and environment. We present a homogeneous theoretical framework based on Horizontal Branch (HB) evolutionary models, envisaging that TIICs are mainly old (t<10 Gyr), low-mass stars. The BLHs are predicted to be post early asymptotic giant branch (PEAGB) stars (double shell burning) on the verge of reaching their AGB track (first crossing of the instability strip), while WVs are a mix of PEAGB and post-AGB stars (hydrogen shell burning) moving from cool to hot (second crossing). Thus suggesting that they are a single group of variable stars. RVTs are predicted to be a mix of post-AGB stars along their second crossing (short-period tail) and thermally pulsing AGB stars (long-period tail) evolving towards their white dwarf cooling sequence. We also present several sets of synthetic HB models by assuming a bimodal mass distribution along the HB. Theory suggests, in agreement with observations, that TIIC pulsation properties marginally depend on metallicity. Predicted period distributions and population ratios for BLHs agree quite well with observations, while those for WVs and RVTs are almost a factor of two smaller and larger than observed, respectively. Moreover, the predicted period distributions for WVs peak at periods shorter than observed, while those for RVTs display a long period tail not supported by observations. We investigate several avenues to explain these differences, but more detailed calculations are required to address them.
No eclipse has been found in 15 days of almost continuous photometry of Alpha Leo with accuracy of about 0.0005 mag.
150 - P. R. Wood 2015
The period-luminosity sequences and the multiple periods of luminous red giant stars are examined using the OGLE III catalogue of long-period variables in the Large Magellanic Cloud. It is shown that the period ratios in individual multimode stars are systematically different from the ratios of the periods at a given luminosity of different period-luminosity sequences. This leads to the conclusion that the masses of stars at the same luminosity on the different period-luminosity sequences are different. An evolutionary scenario is used to show that the masses of stars on adjacent sequences differ by about 16-26% at a given luminosity, with the shorter period sequence being more massive. The mass is also shown to vary across each sequence by a similar percentage, with the mass increasing to shorter periods. On one sequence, sequence B, the mass distribution is shown to be bimodal. It is shown that the small amplitude variables on sequences A, A and B pulsate in radial and nonradial modes of angular degree l=0, 1 and 2, with the l=1 mode being the most common. The stars on sequences C and C are predominantly radial pulsators (l=0). Matching period ratios to pulsation models shows that the radial pulsation modes associated with sequences A, A, B, C and C are the 4th, 3rd, 2nd and 1st overtones and the fundamental mode, respectively.
232 - N. Vogt , A.-N. Chene (1 , 2 2013
Variability on all time scales between seconds and decades is typical for cataclysmic variables (CVs). One of the brightest and best studied CVs is TT Ari, a nova-like variable which belongs to the VY Scl subclass, characterized by occasional low states in their light curves. It is also known as a permanent superhumper at high state, revealing positive (P_S > P_0) as well as negative (P_S < P_0) superhumps, where P_S is the period of the superhump and P_0 the orbital period. TT Ari was observed by the Canadian space telescope MOST for about 230 hours nearly continuously in 2007, with a time resolution of 48 seconds. Here we analyze these data, obtaining a dominant negative superhump signal with a period P_S = 0.1331 days and a mean amplitude of 0.09 mag. Strong flickering with amplitudes up to 0.2 mag and peak-to-peak time scales of 15-20 minutes is superimposed on the periodic variations. We found no indications for significant quasi-periodic oscillations with periods around 15 minutes, reported by other authors. We discuss the known superhump behaviour of TT Ari during the last five decades and conclude that our period value is at the upper limit of all hitherto determined negative superhump periods of TT Ari, before and after the MOST run.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا