We consider several families of binomial sum identities whose definition involves the absolute value function. In particular, we consider centered double sums of the form [S_{alpha,beta}(n) := sum_{k,;ell}binom{2n}{n+k}binom{2n}{n+ell} |k^alpha-ell^alpha|^beta,] obtaining new results in the cases $alpha = 1, 2$. We show that there is a close connection between these double sums in the case $alpha=1$ and the single centered binomial sums considered by Tuenter.