Do you want to publish a course? Click here

Hubble Space Telescope Combined Strong and Weak Lensing Analysis of the CLASH Sample: Mass and Magnification Models and Systematic Uncertainties

479   0   0.0 ( 0 )
 Added by Adi Zitrin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from a comprehensive lensing analysis in HST data, of the complete CLASH cluster sample. We identify new multiple-images previously undiscovered allowing improved or first constraints on the cluster inner mass distributions and profiles. We combine these strong-lensing constraints with weak-lensing shape measurements within the HST FOV to jointly constrain the mass distributions. The analysis is performed in two different common parameterizations (one adopts light-traces-mass for both galaxies and dark matter while the other adopts an analytical, elliptical NFW form for the dark matter), to provide a better assessment of the underlying systematics - which is most important for deep, cluster-lensing surveys, especially when studying magnified high-redshift objects. We find that the typical (median), relative systematic differences throughout the central FOV are $sim40%$ in the (dimensionless) mass density, $kappa$, and $sim20%$ in the magnification, $mu$. We show maps of these differences for each cluster, as well as the mass distributions, critical curves, and 2D integrated mass profiles. For the Einstein radii ($z_{s}=2$) we find that all typically agree within $10%$ between the two models, and Einstein masses agree, typically, within $sim15%$. At larger radii, the total projected, 2D integrated mass profiles of the two models, within $rsim2arcmin$, differ by $sim30%$. Stacking the surface-density profiles of the sample from the two methods together, we obtain an average slope of $dlog (Sigma)/dlog(r)sim-0.64pm0.1$, in the radial range [5,350] kpc. Lastly, we also characterize the behavior of the average magnification, surface density, and shear differences between the two models, as a function of both the radius from the center, and the best-fit values of these quantities.



rate research

Read More

We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters selected from the CLASH survey. Our analysis combines constraints from 16-band HST observations and wide-field multi-color imaging taken primarily with Subaru/Suprime-Cam. We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all clusters. We find internal consistency of the ensemble mass calibration to be $le 5% pm 6%$ by comparison with the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample, we examine the concentration-mass relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $c|_{z=0.34} = 3.95 pm 0.35$ at $M_{200c} simeq 14times 10^{14}M_odot$ and an intrinsic scatter of $sigma(ln c_{200c}) = 0.13 pm 0.06$, in excellent agreement with LCDM predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos, namely, the NFW, Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of $c_{200c} = 3.79^{+0.30}_{-0.28}$ at $M_{200c} = 14.1^{+1.0}_{-1.0}times 10^{14}M_odot$, demonstrating consistency between complementary analysis methods.
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of $c_{200c}=4.01^{+0.35}_{-0.32}$ at $M_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{odot}$. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is $alpha_E=0.191^{+0.071}_{-0.068}$, which is consistent with the NFW-equivalent Einasto parameter of $sim 0.18$. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.
160 - Carlo Giocoli 2013
We study how well halo properties of galaxy clusters, like mass and concentration, are recovered using lensing data. In order to generate a large sample of systems at different redshifts we use the code MOKA. We measure halo mass and concentration using weak lensing data alone (WL), fitting to an NFW profile the reduced tangential shear profile, or by combining weak and strong lensing data, by adding information about the size of the Einstein radius (WL+SL). For different redshifts, we measure the mass and the concentration biases and find that these are mainly caused by the random orientation of the halo ellipsoid with respect to the line-of-sight. Since our simulations account for the presence of a bright central galaxy, we perform mass and concentration measurements using a generalized NFW profile which allows for a free inner slope. This reduces both the mass and the concentration biases. We discuss how the mass function and the concentration mass relation change when using WL and WL+SL estimates. We investigate how selection effects impact the measured concentration-mass relation showing that strong lens clusters may have a concentration 20-30% higher than the average, at fixed mass, considering also the particular case of strong lensing selected samples of relaxed clusters. Finally, we notice that selecting a sample of relaxed galaxy clusters, as is done in some cluster surveys, explain the concentration-mass relation biases.
75 - M. Bradac 2004
Weak gravitational lensing is considered to be one of the most powerful tools to study the mass and the mass distribution of galaxy clusters. However, the mass-sheet degeneracy transformation has limited its success. We present a novel method for a cluster mass reconstruction which combines weak and strong lensing information on common scales and can, as a consequence, break the mass-sheet degeneracy. We extend the weak lensing formalism to the inner parts of the cluster and combine it with the constraints from multiple image systems. We demonstrate the feasibility of the method with simulations, finding an excellent agreement between the input and reconstructed mass also on scales within and beyond the Einstein radius. Using a single multiple image system and photometric redshift information of the background sources used for weak and strong lensing analysis, we find that we are effectively able to break the mass-sheet degeneracy, therefore removing one of the main limitations on cluster mass estimates. We conclude that with high resolution (e.g. HST) imaging data the method can more accurately reconstruct cluster masses and their profiles than currently existing lensing techniques.
258 - A. Zitrin , T. Broadhurst , D. Coe 2011
We examine the inner mass distribution of the relaxed galaxy cluster Abell 383 in deep 16-band HST/ACS+WFC3 imaging taken as part of the CLASH multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage to better identify lensed systems and generate precise photometric redshifts. This information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply-lensed images and candidates, so that a total of 27 multiple-images of 9 systems are used to tightly constrain the inner mass profile, $dlog Sigma/dlog rsimeq -0.6pm 0.1$ (r<160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01<z<6.03, with the higher redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap. The overall mass profile is well fitted by an NFW profile with M_{vir}=(5.37^{+0.70}_{-0.63}pm 0.26) x 10^{14}M_{odot}/h and a relatively high concentration, c_{vir}=8.77^{+0.44}_{-0.42}pm 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of Abell 383 is modest by the standards of other lensing clusters, r_{E}simeq16pm2arcsec (for z_s=2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias. (ABRIDGED)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا