Colossal thermomagnetic response in the exotic superconductor URu2Si2


Abstract in English

When a superconductor is heated above its critical temperature $T_c$, macroscopic coherence vanishes, leaving behind droplets of thermally fluctuating Cooper pair. This superconducting fluctuation effect above $T_c$ has been investigated for many decades and its influence on the transport, thermoelectric and thermodynamic quantities in most superconductors is well understood by the standard Gaussian fluctuation theories. The transverse thermoelectric (Nernst) effect is particularly sensitive to the fluctuations, and the large Nernst signal found in the pseudogap regime of the underdoped high-$T_c$ cuprates has raised much debate on its connection to the origin of superconductivity. Here we report on the observation of a colossal Nernst signal due to the superconducting fluctuations in the heavy-fermion superconductor URu$_2$Si$_2$. The Nernst coefficient is enhanced by as large as one million times over the theoretically expected value within the standard framework of superconducting fluctuations. This, for the first time in any known material, results in a sizeable thermomagnetic figure of merit approaching unity. Moreover, contrary to the conventional wisdom, the enhancement in the Nernst signal is more significant with the reduction of the impurity scattering rate. This anomalous Nernst effect intimately reflects the highly unusual superconducting state embedded in the so-called hidden-order phase of URu$_2$Si$_2$. The results invoke possible chiral or Berry-phase fluctuations originated from the topological aspect of this superconductor, which are associated with the effective magnetic field intrinsically induced by broken time-reversal symmetry of the superconducting order parameter.

Download