Do you want to publish a course? Click here

Dense Molecular Clumps associated with the LMC Supergiant Shells LMC 4 & LMC 5

569   0   0.0 ( 0 )
 Added by Kosuke Fujii
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the effects of Supergiant Shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. $^{12}$CO ($J$=3-2, 1-0) and $^{13}$CO ($J$=1-0) observations with the ASTE and Mopra telescopes have been carried out towards these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities ($n({rm H}_2)$) of the clumps are distributed from low to high density ($10^3$-$10^5$ cm$^{-3}$) and their kinetic temperatures ($T_{rm kin}$) are typically high (greater than $50$ K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of H$alpha$, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density HI envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high $n({rm H}_2)$ and $T_{rm kin}$, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.



rate research

Read More

We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between HI and 12CO(J=1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects (~70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that ~12-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to ~4-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.
144 - Laura G. Book 2009
We examine the recent star formation associated with four supergiant shells (SGSs) in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to infer star formation in the last few Myr, while massive young stellar objects (YSOs) reveal the current ongoing star formation. Distributions of ionized, H I, and molecular components of the interstellar gas are compared with the sites of recent and current star formation to determine whether triggering has taken place. We find that a great majority of the current star formation has occurred in gravitationally unstable regions, and that evidence of triggered star formation is prevalent at both large and local scales.
N49 (LHA 120-N49) is a bright X-ray supernova remnant (SNR) in the Large Magellanic Cloud. We present new $^{12}$CO($J$ = 1-0, 3-2), HI, and 1.4 GHz radio-continuum observations of the SNR N49 using Mopra, ASTE, ALMA, and ATCA. We have newly identified three HI clouds using ATCA with an angular resolution of ~20: one associated with the SNR and the others located in front of the SNR. Both the CO and HI clouds in the velocity range from 280-291 km s$^{-1}$ are spatially correlated with both the soft X-rays (0.2-1.2 keV) and the hard X-rays (2.0-7.0 keV) of N49 on a ~10 pc scale. CO 3-2/1-0 intensity ratios indicate higher values of the CO cloud toward the SNR shell with an angular resolution of ~45, and thus a strong interaction was suggested. Using the ALMA, we have spatially resolved CO clumps embedded within or along the southeastern rim of N49 with an angular resolution of ~3. Three of the CO clumps are rim-brightened on a 0.7-2 pc scale in both hard X-rays and the radio continuum$:$ this provides further evidence for dynamical interactions between the CO clumps and the SNR shock wave. The enhancement of the radio synchrotron radiation can be understood in terms of magnetic-field amplification around the CO clumps via a shock-cloud interaction. We also present a possible scenario in which the recombining plasma that dominates the hard X-rays from N49 was formed via thermal conduction between the SNR shock waves and the cold$/$dense molecular clumps.
Nova LMC 2009a is confirmed as a Recurrent Nova (RN) from positional coincidence with nova LMC 1971b. The observational data set is one of the most comprehensive for any Galactic or extragalactic RN: optical and near-IR photometry from outburst until over 6 years later; optical spectra for the first 6 months, and Swift satellite Ultraviolet and X-ray observations from 9 days to almost 1 year post-outburst. We find $M_V = -8.4pm0.8_{mathrm{r}}pm0.7_{mathrm{s}}$ and expansion velocities between 1000 and 4000 km s$^{-1}$. Coronal line emission before day 9 indicates shocks in the ejecta. Strengthening of He II $lambda$4686 preceded the emergence of the Super-Soft Source (SSS) in X-rays at $sim63-70$ days, which was initially very variable. Periodic modulations, $P=1.2$ days, most probably orbital in nature, were evident in the UV and optical from day 43. Subsequently, the SSS shows an oscillation with the same period but with a delay of 0.28P. The progenitor system has been identified; the secondary is most likely a sub-giant feeding a luminous accretion disk. Properties of the SSS infer a white dwarf (WD) mass $1.1 mathrm{M}_odot lesssim M_{rm WD} lesssim 1.3 mathrm{M}_odot$. If the accretion occurs at constant rate, $dot{it{M}}_{rm acc} simeq 3.6^{+4.7}_{-2.5} times 10^{-7} mathrm{M}_odot$ yr$^{-1}$ is needed, consistent with nova models for an inter-eruption interval of 38 years, low outburst amplitude, progenitor position in the color-magnitude diagram, and spectral energy distribution at quiescence. We note striking similarities between LMC 2009a and the Galactic nova KT Eri, suggesting that KT Eri is a candidate RN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا