Super-Eddington accretion in ultra-luminous neutron star binary


Abstract in English

We discuss properties of the ultra-luminous $X$-ray source in the galaxy M82, NuSTAR J095551+6940.8, containing an accreting neutron star. The neutron star has surface magnetic field $ B_{NS} approx 1.4 times 10^{13 } , {rm G}$ and experiences accretion rate of $9 times 10^{-7} M_odot {rm , yr}^{-1} $. The magnetospheric radius, close to the corotation radius, is $sim 2 times 10^8$ cm. The accretion torque on the neutron star is reduce well below what is expected in a simple magnetospheric accretion due to effective penetration of the stellar magnetic field into the disk beyond the corotation radius. As a result, the radiative force of the surface emission does not lead to strong coronal wind, but pushes plasma along magnetic field lines towards the equatorial disk. The neutron star is nearly an orthogonal rotator, with the angle between the rotation axis and the magnetic moment $geq 80$ degrees. Accretion occurs through optically thick -- geometrically thin and flat accretion curtain, which cuts across the polar cap. High radiation pressure from the neutron star surface is nevertheless smaller than that the ram pressure of the accreting material flowing through the curtain, and thus fails to stop the accretion. At distances below few stellar radii the magnetic suppression of the scattering cross-section becomes important. The $X$-ray luminosity (pulsed and persistent components) comes both from the neutron star surface as a hard $X$-ray component and as a soft component from reprocessing by the accretion disk.

Download