We describe a survey of nearby core-collapse supernova (SN) explosion sites using integral field spectroscopy (IFS) technique, which is an extension of the work described in Kuncarayakti et al. (2013, AJ, 146, 30/31) . The project aims to constrain the SN progenitor properties based on the study of the SN immediate environment. The stellar populations present at the SN explosion sites are studied by means of integral field spectroscopy, which enables the acquisition of both spatial and spectral information of the object simultaneously. The spectrum of the SN parent stellar population gives the estimate of its age and metallicity. With this information, the initial mass and metallicity of the once coeval SN progenitor star are derived. While the survey is mostly done in optical, additionally the utilization of near-infrared integral field spectroscopy assisted with adaptive optics (AO) enables us to examine the explosion sites in high spatial details, down to a few parsecs. This work is being carried out using multiple 2-8 m class telescopes equipped with integral field spectrographs in Chile and Hawaii.