Do you want to publish a course? Click here

Charge exchange reaction by Reggeon exchange and W$^{+}$W$^{-}$-fusion

62   0   0.0 ( 0 )
 Added by Rainer Schicker M
 Publication date 2014
  fields
and research's language is English
 Authors R. Schicker




Ask ChatGPT about the research

Charge exchange reactions at high energies are examined. The existing cross section data on the Reggeon induced reaction pp $rightarrow$ n + $Delta^{++}$ taken at the ZGS and ISR accelerators are extrapolated to the energies of the RHIC and LHC colliders. The interest in the charge exchange reaction induced by $W^{pm}$-fusion is presented, and the corresponding QCD-background is examined.

rate research

Read More

169 - J. L. Holzbauer 2015
We discuss W boson and lepton charge asymmetry measurements from W decays in the electron channel, which were made using 9.7 fb$^{-1}$ of RunII data collected by the D0 detector at the Fermilab Tevatron Collider. The electron charge asymmetry is presented as a function of pseudo-rapidity out to |$eta$| $le$ 3.2, in five symmetric and asymmetric kinematic bins of electron transverse momentum and the missing transverse energy of the event. We also give the W charge asymmetry as a function of W boson rapidity. The asymmetries are compared with next-to-leading order perturbative quantum chromodynamics calculations. These charge asymmetry measurements will allow more accurate determinations of the proton parton distribution functions and are the most precise to date.
We study the fusion processes $W^-W^+to tbar t$ and $ZZto tbar t$ observable at a future $e^-e^+$ collider and we discuss their sensitivity to an $Htt$ form factor which may be due to compositeness, in particular when the $H$ and the top quark have common constituents. We make an amplitude analysis and illustrate which helicity amplitudes and cross sections for specific final $tbar t$ polarizations are especially sensitive to this form factor.
In a study of the reaction e-e+ -> W-W+ with the DELPHI detector, the probabilities of the two W particles occurring in the joint polarisation states transverse-transverse (TT), longitudinal-transverse plus transverse-longitudinal (LT) and longitudinal-longitudinal (LL) have been determined using the final states WW -> l nu q qbar (l = e, mu). The two-particle joint polarisation probabilities, i.e. the spin density matrix elements rho_TT, rho_LT, rho_LL, are measured as functions of the W- production angle, theta_W-, at an average reaction energy of 198.2 GeV. Averaged over all cos(theta_W-), the following joint probabilities are obtained: rho_TT = (67 +/- 8)%, rho_LT = (30 +/- 8)%, rho_LL = (3 +/- 7)% . These results are in agreement with the Standard Model predictions of 63.0%, 28.9% and 8.1%, respectively. The related polarisation cross-sections sigma_TT, sigma_LT and sigma_LL are also presented.
88 - Julien Baglio 2016
The study of the Higgs boson properties is one of the most important tasks to be accomplished in the next years, at the Large Hadron Collider (LHC) and at future colliders such as the Future Circular Collider in hadron-hadron mode (FCC-hh), the potential 100 TeV follow-up of the LHC machine. In this view the precise study of the Higgs couplings to weak gauge bosons is crucial and requires as much information as possible. After the recent calculation of the next-to-leading order QCD corrections to the production cross sections and differential distributions of a Standard Model Higgs boson in association with a pair of weak bosons, matched with parton shower in the POWHEG-BOX framework, we present the gluon fusion correction $g gto H W^+_{} W^-_{} ( H Z Z)$ to the process $p p to H W^+_{} W^-_{} (H Z Z)$. This correction can be sizeable and amounts to $+3,%$ ($+10,%$) in the $H W^+_{} W^-_{}$ process and $+5,%$ ($+18,%$) in the $H Z Z$ process at the LHC (FCC-hh). We also present the first study of the impact of the bottom--quark initiated channels $bbar{b}to H W^+_{} W^-_{} / H Z Z$ and find that they induce a significant $+18,%$ correction in the $H W^+_{} W^-_{}$ channel at the FCC-hh. We present results on total cross sections and distributions at the LHC and at the FCC-hh.
We have measured pion single charge exchange differential cross sections on the proton at 27.5 MeV incident $pi^-$ kinetic energy in the center of momentum angular range between $0^circ$ and $55^circ$. The extracted cross sections are compared with predictions of the standard pion-nucleon partial wave analysis and found to be in excellent agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا