Do you want to publish a course? Click here

Discovery of $sim$ 9,000 new RR Lyrae in the Southern Catalina Surveys

477   0   0.0 ( 0 )
 Added by Gabriel Torrealba
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a deep, wide-area variability survey in the Southern hemisphere, the first of its kind. As part of the Catalina Sky Surveys, the Siding Spring Survey (SSS) has covered $14,800$ square degrees in the declination range of $-75^{circ}leqdeltaleq-15^{circ}$. To mine the enormous SSS dataset efficiently we have developed two algorithms: Automatic Period Selection (APS) and Automatic Fourier Decomposition (AFD), which aim to sharpen the period estimation and produce robust lightcurve models. Armed with the APS and AFD outputs we classify $10,540$ ab-type RR Lyrae (RRab) stars ($sim$90% of which are new) across the Southern sky. As well as the positional information we supply photometric metallicities, and unreddened distances. For the RRab stars in the halo, a study of the photometric metallicity distribution reveals a nearly Gaussian shape with a mean metallicity of ${rm [Fe/H]}=-1.4$ dex and a dispersion of $0.3$ dex. A spatial study of the RRab metallicities shows no significant radial gradient in the first $sim7$ kpc from the Galaxy center. However, further out, a small negative gradient is clearly present. This is complemented by a very obvious correlation of the mean RR Lyrae metallicity with distance above the Galactic plane, $z$. We have also carried out an initial substructure search using the discovered RRab, and present the properties of the candidates with significance greater than $2 sigma$. Most prominent among these is a southern extension of the Sagittarius dwarf galaxys stream system, reaching down to declinations $sim -40deg$.



rate research

Read More

We present the analysis of 12227 type-ab RR Lyrae found among the 200 million public lightcurves in the Catalina Surveys Data Release 1 (CSDR1). These stars span the largest volume of the Milky Way ever surveyed with RR Lyrae, covering ~20,000 square degrees of the sky (0 < RA < 360, -22 < Dec < 65 deg) to heliocentric distances of up to 60kpc. Each of the RR Lyrae are observed between 60 and 419 times over a six-year period. Using period finding and Fourier fitting techniques we determine periods and apparent magnitudes for each source. We find that the periods at generally accurate to sigma = 0.002% by comparison with 2842 previously known RR Lyrae and 100 RR Lyrae observed in overlapping survey fields. We photometrically calibrate the light curves using 445 Landolt standard stars and show that the resulting magnitudes are accurate to ~0.05 mags using SDSS data for ~1000 blue horizontal branch stars and 7788 of the RR Lyrae. By combining Catalina photometry with SDSS spectroscopy, we analyze the radial velocity and metallicity distributions for > 1500 of the RR Lyrae. Using the accurate distances derived for the RR Lyrae, we show the paths of the Sagittarius tidal streams crossing the sky at heliocentric distances from 20 to 60 kpc. By selecting samples of Galactic halo RR Lyrae, we compare their velocity, metallicity, and distance with predictions from a recent detailed N-body model of the Sagittarius system. We find that there are some significant differences between the distances and structures predicted and our observations.
Deep near-IR images from the VISTA Variables in the Via Lactea (VVV) Survey were used to search for RR Lyrae stars in the Southern Galactic plane. A sizable sample of 404 RR Lyrae of type ab stars was identified across a thin slice of the 4$^{rm th}$ Galactic quadrant ($295deg < l < 350deg$, $-2.24deg < b < -1.05deg$). The samples distance distribution exhibits a maximum density that occurs at the bulge tangent point, which implies that this primarily Oosterhoff type I population of RRab stars does not trace the bar delineated by their red clump counterparts. The bulge RR Lyrae population does not extend beyond $l sim340 deg$, and the samples spatial distribution presents evidence of density enhancements and substructure that warrants further investigation. Indeed, the sample may be employed to evaluate Galactic evolution models, and is particularly lucrative since half of the discovered RR Lyrae are within reach of Gaia astrometric observations.
118 - T. D. Kinman 2012
We show that SDSS J170733.93+585059.7 (hereafter SDSS J1707+58), previously identified by Aoki and collaborators as a carbon-enhanced metal-poor star (with s-process-element enhancements; CEMP-s), on the assumption that it is a main-sequence turn-off star, is the RR Lyrae star VIII-14 identified by the Lick Astrograph Survey. Revised abundances for SDSS J1707+58 are [Fe/H] = -2.92, [C/Fe] = +2.79, and [Ba/Fe] = +2.83. It is thus one of the most metal-poor RR Lyrae stars known, and has more extreme [C/Fe] and [Ba/Fe] than the only other RR Lyrae star known to have a CEMP-s spectrum (TY Gru). Both stars are Oosterhoff II stars with prograde kinematics, in contrast to stars with [C/Fe] < +0.7, such as KP Cyg and UY CrB, which are disk stars. Twelve other RR Lyrae stars with [C/Fe] >= +0.7 are presented as CEMP candidates for further study.
NGC 362 is a bright southern globular cluster for which no extensive variability survey has ever been done. Time-series CCD photometric observations have been obtained. Light curves have been derived with both profile fitting photometry and image subtraction. We developed a simple method to convert flux phase curves to magnitudes, which allows the use of empirical light curve shape vs. physical parameters calibrations. Using the RR Lyrae metallicity and luminosity calibrations, we have determined the relative iron abundances and absolute magnitudes of the stars. The color-magnitude diagram has been fitted with Yale-Yonsei isochrones to determine reddening and distance independently. For five RR Lyrae stars we obtained radial velocity measurements from optical spectra. We found 45 RR Lyr stars, of which the majority are new discoveries. About half of the RR Lyraes exhibit light curve changes (Blazhko effect). The RR Lyrae-based metallicity of the cluster is [Fe/H]=-1.16 +/- 0.25, the mean absolute magnitude of the RR Lyrae stars is M_V=0.82 +/- 0.04 mag implying a distance of 7.9 +/- 0.6 kpc. The mean period of RRab stars is 0.585 +/- 0.081 days. These properties place NGC 362 among the Oosterhoff type I globular clusters. The isochrone fit implies a slightly larger distance of 9.2 +/- 0.5 kpc and an age of 11 +/- 1 Gyr. We also found 11 eclipsing binaries, 14 pulsating stars of other types, including classical Cepheids in the SMC and 15 variable stars with no firm classification.
166 - G. Hajdu , M. Catelan (1 2015
Despite their importance, very few RR Lyrae (RRL) stars have been known to reside in binary systems. We report on a search for binary RRL in the OGLE-III Galactic bulge data. Our approach consists in the search for evidence of the light-travel time effect in so-called observed minus calculated ($O-C$) diagrams. Analysis of 1952 well-observed fundamental-mode RRL in the OGLE-III data revealed an initial sample of 29 candidates. We used the recently released OGLE-IV data to extend the baselines up to 17 years, leading to a final sample of 12 firm binary candidates. We provide $O-C$ diagrams and binary parameters for this final sample, and also discuss the properties of 8 additional candidate binaries whose parameters cannot be firmly determined at present. We also estimate that $gtrsim 4$ per cent of the RRL reside in binary systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا