Do you want to publish a course? Click here

Abrupt Motion Tracking via Nearest Neighbor Field Driven Stochastic Sampling

126   0   0.0 ( 0 )
 Added by Tianfei Zhou
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Stochastic sampling based trackers have shown good performance for abrupt motion tracking so that they have gained popularity in recent years. However, conventional methods tend to use a two-stage sampling paradigm, in which the search space needs to be uniformly explored with an inefficient preliminary sampling phase. In this paper, we propose a novel sampling-based method in the Bayesian filtering framework to address the problem. Within the framework, nearest neighbor field estimation is utilized to compute the importance proposal probabilities, which guide the Markov chain search towards promising regions and thus enhance the sampling efficiency; given the motion priors, a smoothing stochastic sampling Monte Carlo algorithm is proposed to approximate the posterior distribution through a smoothing weight-updating scheme. Moreover, to track the abrupt and the smooth motions simultaneously, we develop an abrupt-motion detection scheme which can discover the presence of abrupt motions during online tracking. Extensive experiments on challenging image sequences demonstrate the effectiveness and the robustness of our algorithm in handling the abrupt motions.



rate research

Read More

68 - Fabien Andre 2017
Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors into short codes using several sub-quantizers, which enables in-RAM storage of large databases. This allows fast answers to NN queries, without accessing the SSD or HDD. The key feature of PQ is that it can compute distances between short codes and high-dimensional vectors using cache-resident lookup tables. The efficiency of this technique, named Asymmetric Distance Computation (ADC), remains limited because it performs many cache accesses. In this paper, we introduce Quick ADC, a novel technique that achieves a 3 to 6 times speedup over ADC by exploiting Single Instruction Multiple Data (SIMD) units available in current CPUs. Efficiently exploiting SIMD requires algorithmic changes to the ADC procedure. Namely, Quick ADC relies on two key modifications of ADC: (i) the use 4-bit sub-quantizers instead of the standard 8-bit sub-quantizers and (ii) the quantization of floating-point distances. This allows Quick ADC to exceed the performance of state-of-the-art systems, e.g., it achieves a Recall@100 of 0.94 in 3.4 ms on 1 billion SIFT descriptors (128-bit codes).
31 - Stephen Whitelam 2018
A conceptually simple way to classify images is to directly compare test-set data and training-set data. The accuracy of this approach is limited by the method of comparison used, and by the extent to which the training-set data cover configuration space. Here we show that this coverage can be substantially increased using coarse graining (replacing groups of images by their centroids) and stochastic sampling (using distinct sets of centroids in combination). We use the MNIST and Fashion-MNIST data sets to show that a principled coarse-graining algorithm can convert training images into fewer image centroids without loss of accuracy of classification of test-set images by nearest-neighbor classification. Distinct batches of centroids can be used in combination as a means of stochastically sampling configuration space, and can classify test-set data more accurately than can the unaltered training set. On the MNIST and Fashion-MNIST data sets this approach converts nearest-neighbor classification from a mid-ranking- to an upper-ranking member of the set of classical machine-learning techniques.
High-dimensional Nearest Neighbor (NN) search is central in multimedia search systems. Product Quantization (PQ) is a widespread NN search technique which has a high performance and good scalability. PQ compresses high-dimensional vectors into compact codes thanks to a combination of quantizers. Large databases can, therefore, be stored entirely in RAM, enabling fast responses to NN queries. In almost all cases, PQ uses 8-bit quantizers as they offer low response times. In this paper, we advocate the use of 16-bit quantizers. Compared to 8-bit quantizers, 16-bit quantizers boost accuracy but they increase response time by a factor of 3 to 10. We propose a novel approach that allows 16-bit quantizers to offer the same response time as 8-bit quantizers, while still providing a boost of accuracy. Our approach builds on two key ideas: (i) the construction of derived codebooks that allow a fast and approximate distance evaluation, and (ii) a two-pass NN search procedure which builds a candidate set using the derived codebooks, and then refines it using 16-bit quantizers. On 1 billion SIFT vectors, with an inverted index, our approach offers a Recall@100 of 0.85 in 5.2 ms. By contrast, 16-bit quantizers alone offer a Recall@100 of 0.85 in 39 ms, and 8-bit quantizers a Recall@100 of 0.82 in 3.8 ms.
103 - Yizhu Wang , Wenyi Zhang 2020
It is well known that for linear Gaussian channels, a nearest neighbor decoding rule, which seeks the minimum Euclidean distance between a codeword and the received channel output vector, is the maximum likelihood solution and hence capacity-achieving. Nearest neighbor decoding remains a convenient and yet mismatched solution for general channels, and the key message of this paper is that the performance of the nearest neighbor decoding can be improved by generalizing its decoding metric to incorporate channel state dependent output processing and codeword scaling. Using generalized mutual information, which is a lower bound to the mismatched capacity under independent and identically distributed codebook ensemble, as the performance measure, this paper establishes the optimal generalized nearest neighbor decoding rule, under Gaussian channel input. Several suboptimal but reduced-complexity generalized nearest neighbor decoding rules are also derived and compared with existing solutions. The results are illustrated through several case studies for channels with nonlinear effects, and fading channels with receiver channel state information or with pilot-assisted training.
Though nearest neighbor Machine Translation ($k$NN-MT) cite{khandelwal2020nearest} has proved to introduce significant performance boosts over standard neural MT systems, it is prohibitively slow since it uses the entire reference corpus as the datastore for the nearest neighbor search. This means each step for each beam in the beam search has to search over the entire reference corpus. $k$NN-MT is thus two-order slower than vanilla MT models, making it hard to be applied to real-world applications, especially online services. In this work, we propose Fast $k$NN-MT to address this issue. Fast $k$NN-MT constructs a significantly smaller datastore for the nearest neighbor search: for each word in a source sentence, Fast $k$NN-MT first selects its nearest token-level neighbors, which is limited to tokens that are the same as the query token. Then at each decoding step, in contrast to using the entire corpus as the datastore, the search space is limited to target tokens corresponding to the previously selected reference source tokens. This strategy avoids search through the whole datastore for nearest neighbors and drastically improves decoding efficiency. Without loss of performance, Fast $k$NN-MT is two-order faster than $k$NN-MT, and is only two times slower than the standard NMT model. Fast $k$NN-MT enables the practical use of $k$NN-MT systems in real-world MT applications.footnote{Code is available at url{https://github.com/ShannonAI/fast-knn-nmt.}}
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا