The stickiness of micrometer-sized water-ice particles


Abstract in English

Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates) water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-size region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of $mathrm{mu}$m-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between $114 , mathrm{K}$ and $260 , mathrm{K}$. We show with our experiments that for low temperatures (below $sim 210 , mathrm{K}$), $mathrm{mu}$m-sized water-ice particles stick below a threshold velocity of $9.6 , mathrm{m , s^{-1}}$, which is approximately ten times higher than the sticking threshold of $mathrm{mu}$m-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above $15.3 , mathrm{m , s^{-1}}$. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

Download