Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics


Abstract in English

We propose an adiabatic passage approach to generate two atoms three- dimensional entanglement with the help of quantum Zeno dynamics in a time- dependent interacting field. The atoms are trapped in two spatially separated cavi- ties connected by a fiber, so that the individual addressing is needless. Because the scheme is based on the resonant interaction, the time required to generate entangle- ment is greatly shortened. Since the fields remain in vacuum state and all the atoms are in the ground states, the losses due to the excitation of photons and the spon- taneous transition of atoms are suppressed efficiently compared with the dispersive protocols. Numerical simulation results show that the scheme is robust against the decoherences caused by the cavity decay and atomic spontaneous emission. Addi- tionally, the scheme can be generalized to generate N-atom three-dimensional en- tanglement and high-dimensional entanglement for two spatially separated atoms.

Download