An Introduction to Applications of Wavelet Benchmarking with Seasonal Adjustment


Abstract in English

Prior to adjustment, accounting conditions between national accounts data sets are frequently violated. Benchmarking is the procedure used by economic agencies to make such data sets consistent. It typically involves adjusting a high frequency time series (e.g. quarterly data) so it becomes consistent with a lower frequency version (e.g. annual data). Various methods have been developed to approach this problem of inconsistency between data sets. This paper introduces a new statistical procedure; namely wavelet benchmarking. Wavelet properties allow high and low frequency processes to be jointly analysed and we show that benchmarking can be formulated and approached succinctly in the wavelet domain. Furthermore the time and frequency localisation properties of wavelets are ideal for handling more complicated benchmarking problems. The versatility of the procedure is demonstrated using simulation studies where we provide evidence showing it substantially outperforms currently used methods. Finally, we apply this novel method of wavelet benchmarking to official Office of National Statistics (ONS) data.

Download