No Arabic abstract
We present a multi-wavelength study to analyse the star formation process associated with the mid-infrared bubble CN 148 (H II region G10.3-0.1), which harbors an O5V-O6V star. The arc-shaped distribution of molecular CO(2-1) emission, the cold dust emission, and the polycyclic aromatic hydrocarbon features trace a photodissociation region (PDR) around the H II region. We have identified 371 young stellar objects (YSOs) in the selected region and, interestingly, their spatial distribution correlates well with the PDR. 41% of these YSOs are present in 13 clusters, each having visual extinction larger than 16 mag. The clusters at the edges of the bubble (both northeast and southwest) are found to be relatively younger than the clusters located further away from the bubble. We also find that four 6.7 GHz methanol masers, two Extended Green Objects, an ultra-compact H II region, and a massive protostar candidate (as previously reported) are spatially positioned at the edges of the bubble. The existence of an apparent age gradient in YSO clusters and different early evolutionary stages of massive star formation around the bubble suggest their origin to be influenced by an H II region expanding into the surrounding interstellar medium. The data sets are suggestive of triggered star formation.
Using the star cluster catalogs from the Hubble Space Telescope program Legacy ExtraGalactic UV survey (LEGUS) and 8 $mu$m images from the IRAC camera on the Spitzer Space Telescope for 5 galaxies within 5 Mpc, we investigate how the 8 $mu$m dust luminosity correlates with the stellar age on the 30--50 pc scale of star forming regions. We construct a sample of 97 regions centered at local peaks of 8 $mu$m emission, each containing one or more young star cluster candidates from the LEGUS catalogs. We find a tight anti-correlation with a Pearson correlation coefficient of $r=-0.84pm0.05$ between the mass-normalized dust-only 8 $mu$m luminosity and the age of stellar clusters younger than 1 Gyr; the 8 $mu$m luminosity decreases with increasing age of the stellar population. Simple assumptions on a combination of stellar and dust emission models reproduce the observed trend. We also explore how the scatter of the observed trend depends on assumptions of stellar metallicity, PAH abundance, fraction of stellar light absorbed by dust, and instantaneous versus continuous star formation models. We find that variations in stellar metallicity have little effect on the scatter, while PAH abundance and the fraction of dust-absorbed light bracket the full range of the data. We also find that the trend is better explained by continuous star formation, rather than instantaneous burst models. We ascribe this result to the presence of multiple star clusters with different ages in many of the regions. Upper limits of the dust-only 8 $mu$m emission as a function of age are provided.
In this paper we present the results of a mid infrared study of G49.5-0.4, or W51A, part of the massive starbirth complex W51. Combining public data from the $Spitzer$ IRAC camera, and Gemini mid infrared camera T-ReCS at 7.73, 9.69, 12.33 and 24.56 micron, with spatial resolution of $sim$0.5arcsec, we have identified the mid infrared counterparts of 8 ultracompact HII regions, showing that two radio sources are deeply embedded in molecular clouds and another is a cloud of ionized gas. From the T-ReCS data we have unveiled the central core of W51 region, revealing massive young stellar candidates. We modeled the spectral energy distribution of the detected sources suggesting the embedded objects are sources with spectral types ranging from B3 to O5, but the majority of the fits indicate stellar objects with B1 spectral types. We also present an extinction map of IRS~2, showing that a region with lower extinction corresponds to the region where a proposed jet of gas has impacted the foreground cloud. From this map, we also derived the total extinction towards the enigmatic source IRS~2E, which amounts to $sim$60 magnitudes in the $V$ band. We calculated the color temperature due to thermal emission of the circumstellar dust of the detected sources; the temperatures are in the interval of $sim$100 -- 150 K, which corresponds to the emission of dust located at 0.1 pc from the central source. Finally, we show a possible mid infrared counterpart of a detected source at mm wavelengths that was found by cite{zap08,zap09} to be a massive young stellar object undergoing a high accretion rate.
To observationally explore physical processes, we present a multi-wavelength study of a wide-scale environment toward l = 13.7 - 14.9 degrees containing a mid-infrared bubble N14. The analysis of 12CO, 13CO, and C18O gas at [31.6, 46] km/s reveals an extended physical system (extension ~59 pc x 29 pc), which hosts at least five groups of the ATLASGAL 870 micron dust clumps at d ~3.1 kpc. These spatially-distinct groups/sub-regions contain unstable molecular clumps, and are associated with several Class I young stellar objects (mean age ~0.44 Myr). At least three groups of ATLASGAL clumps associated with the expanding HII regions (including the bubble N14) and embedded infrared dark clouds, devoid of the ionized gas, are found in the system. The observed spectral indices derived using the GMRT and THOR radio continuum data suggest the presence of non-thermal emission with the HII regions. High resolution GMRT radio continuum map at 1280 MHz traces several ionized clumps powered by massive B-type stars toward N14, which are considerably young (age ~10^3 - 10^4 years). Locally, early stage of star formation is evident toward all the groups of clumps. The position-velocity maps of 12CO, 13CO, and C18O exhibit an oscillatory-like velocity pattern toward the selected longitude range. Considering the presence of different groups/sub-regions in the system, the oscillatory pattern in velocity is indicative of the fragmentation process. All these observed findings favour the applicability of the global collapse scenario in the extended physical system, which also seems to explain the observed hierarchy.
We use 2MASS and MSX infrared observations, along with new molecular line (CO) observations, to examine the distribution of young stellar objects (YSOs) in the molecular cloud surrounding the halo HII region KR 140 in order to determine if the ongoing star-formation activity in this region is dominated by sequential star formation within the photodissociation region (PDR) surrounding the HII region. We find that KR 140 has an extensive population of YSOs that have spontaneously formed due to processes not related to the expansion of the HII region. Much of the YSO population in the molecular cloud is concentrated along a dense filamentary molecular structure, traced by C18O, that has not been erased by the formation of the exciting O star. Some of the previously observed submillimetre clumps surrounding the HII region are shown to be sites of recent intermediate and low-mass star formation while other massive starless clumps clearly associated with the PDR may be the next sites of sequential star formation.
We studied the environment of the dust bubble N10 in molecular emission. Infrared bubbles, first detected by the GLIMPSE survey at 8.0 $mu$m, are ideal regions to investigate the effect of the expansion of the HII region on its surroundings eventual triggered star formation at its borders. In this work, we present a multi-wavelength study of N10. This bubble is especially interesting as infrared studies of the young stellar content suggest a scenario of ongoing star formation, possibly triggered, on the edge of the HII region. We carried out observations of $^{12}$CO(1-0) and $^{13}$CO(1-0) emission at PMO 13.7-m towards N10. We also analyzed the IR and sub-mm emission on this region and compare those different tracers to obtain a detailed view of the interaction between the expanding HII region and the molecular gas. We also estimated the parameters of the denser cold dust condensation and of the ionized gas inside the shell. Bright CO emission was detected and two molecular clumps were identified, from which we have derived physical parameters. We also estimate the parameters for the densest cold dust condensation and for the ionized gas inside the shell. The comparison between the dynamical age of this region and the fragmentation time scale favors the Radiation-Driven Implosion mechanism of star formation. N10 reveals to be specially interesting case with gas structures in a narrow frontier between HII region and surrounding molecular material, and with a range of ages of YSOs situated in region indicating triggered star formation.