Do you want to publish a course? Click here

Spin dynamics of Mn impurities and their bound acceptors in GaAs

356   0   0.0 ( 0 )
 Added by Reza Mahani
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of tight-binding spin-dynamics simulations of individual and pairs of substitutional Mn impurities in GaAs. Our approach is based on the mixed quantum-classical scheme for spin dynamics, with coupled equations of motions for the quantum subsystem, representing the host, and the localized spins of magnetic dopants, which are treated classically. In the case of a single Mn impurity, we calculate explicitly the time evolution of the Mn spin and the spins of nearest-neighbors As atoms, where the acceptor (hole) state introduced by the Mn dopant resides. We relate the characteristic frequencies in the dynamical spectra to the two dominant energy scales of the system, namely the spin-orbit interaction strength and the value of the p-d exchange coupling between the impurity spin and the host carriers. For a pair of Mn impurities, we find signatures of the indirect (carrier-mediated) exchange interaction in the time evolution of the impurity spins. Finally, we examine temporal correlations between the two Mn spins and their dependence on the exchange coupling and spin-orbit interaction strength, as well as on the initial spin-configuration and separation between the impurities. Our results provide insight into the dynamic interaction between localized magnetic impurities in a nano-scaled magnetic-semiconductor sample, in the extremely dilute (solotronics) regime.



rate research

Read More

We investigate the effect of an external magnetic field on the physical properties of the acceptor hole states associated with single Mn acceptors placed near the (110) surface of GaAs. Crosssectional scanning tunneling microscopy images of the acceptor local density of states (LDOS) show that the strongly anisotropic hole wavefunction is not significantly affected by a magnetic field up to 6 T. These experimental results are supported by theoretical calculations based on a tightbinding model of Mn acceptors in GaAs. For Mn acceptors on the (110) surface and the subsurfaces immediately underneath, we find that an applied magnetic field modifies significantly the magnetic anisotropy landscape. However the acceptor hole wavefunction is strongly localized around the Mn and the LDOS is quite independent of the direction of the Mn magnetic moment. On the other hand, for Mn acceptors placed on deeper layers below the surface, the acceptor hole wavefunction is more delocalized and the corresponding LDOS is much more sensitive on the direction of the Mn magnetic moment. However the magnetic anisotropy energy for these magnetic impurities is large (up to 15 meV), and a magnetic field of 10 T can hardly change the landscape and rotate the direction of the Mn magnetic moment away from its easy axis. We predict that substantially larger magnetic fields are required to observe a significant field-dependence of the tunneling current for impurities located several layers below the GaAs surface.
We carry out microphotoluminescence measurements of an acceptor-bound exciton (A^0X) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into account a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.
We observe millisecond spin-flip relaxation times of donor-bound electrons in high-purity n-GaAs . This is three orders of magnitude larger than previously reported lifetimes in n-GaAs . Spin-flip times are measured as a function of magnetic field and exhibit a strong power-law dependence for fields greater than 4 T . This result is in qualitative agreement with previously reported theory and measurements of electrons in quantum dots.
139 - T. Zhang , P. Barate , C.T. Nguyen 2012
Optical orientation experiments have been performed in GaAs epilayers with photoexcitation energies in the 3 eV region yielding the photogeneration of spin-polarized electrons in the satellite L valley. We demonstrate that a significant fraction of the electron spin memory can be conserved when the electron is scattered from the L to the $Gamma$ valley following an energy relaxation of several hundreds of meV. Combining these high energy photo-excitation experiments with time-resolved photoluminescence spectroscopy of $Gamma$ valley spin-polarized photogenerated electrons allows us to deduce a typical L valley electron spin relaxation time of 200 fs, in agreement with theoretical calculations.
Transport properties of GaAs/{delta}<Mn>/GaAs/IntimesGa1-timesAs/GaAs structures containing InxGa1-xAs (times {approx} 0.2) quantum well (QW) and Mn delta layer (DL) with relatively high, about one Mn monolayer (ML) content, are studied. In these structures DL is separated from QW by GaAs spacer with the thickness ds = 2-5 nm. All structures possess a dielectric character of conductivity and demonstrate a maximum in the resistance temperature dependence Rxx(T) at the temperature {approx} 46K which is usually associated with the Curie temperature Tc of ferromagnetic (FM) transition in DL. However, it is found that the Hall effect concentration of holes pH in QW does not decrease below TC as one ordinary expects in similar systems. On the contrary, the dependence pH(T) experiences a minimum at T = 80-100 K depending on the spacer thickness, then increases at low temperatures more strongly than ds is smaller and reaches a giant value pH = (1-2)cdot10^13 cm^(-2). Obtained results are interpreted in the terms of magnetic proximity effect of DL on QW, leading to induce spin polarization of the holes in QW. Strong structural and magnetic disorder in DL and QW, leading to the phase segregation in them is taken into consideration. The high pH value is explained as a result of compensation of the positive sign normal Hall effect component by the negative sign anomalous Hall effect component.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا