Do you want to publish a course? Click here

Some applications of uncertainty relations in quantum information

120   0   0.0 ( 0 )
 Added by Tanumoy Pramanik
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss some applications of vario



rate research

Read More

How violently do two quantum operators disagree? Different fields of physics feature different measures of incompatibility: (i) In quantum information theory, entropic uncertainty relations constrain measurement outcomes. (ii) In condensed matter and high-energy physics, the out-of-time-ordered correlator (OTOC) signals scrambling, the spread of information through many-body entanglement. We unite these measures, proving entropic uncertainty relations for scrambling. The entropies are of distributions over weak and strong measurements possible outcomes. The weak measurements ensure that the OTOC quasiprobability (a nonclassical generalization of a probability, which coarse-grains to the OTOC) governs terms in the uncertainty bound. The quasiprobability causes scrambling to strengthen the bound in numerical simulations of a spin chain. This strengthening shows that entropic uncertainty relations can reflect the type of operator disagreement behind scrambling. Generalizing beyond scrambling, we prove entropic uncertainty relations satisfied by commonly performed weak-measurement experiments. We unveil a physical significance of weak values (conditioned expectation values): as governing terms in entropic uncertainty bounds.
We establish uncertainty relations between information loss in general open quantum systems and the amount of non-ergodicity of the corresponding dynamics. The relations hold for arbitrary quantum systems interacting with an arbitrary quantum environment. The elements of the uncertainty relations are quantified via distance measures on the space of quantum density matrices. The relations hold for arbitrary distance measures satisfying a set of intuitively satisfactory axioms. The relations show that as the non-ergodicity of the dynamics increases, the lower bound on information loss decreases, which validates the belief that non-ergodicity plays an important role in preserving information of quantum states undergoing lossy evolution. We also consider a model of a central qubit interacting with a fermionic thermal bath and derive its reduced dynamics, to subsequently investigate the information loss and nonergodicity in such dynamics. We comment on the minimal situations that saturate the uncertainty relations.
In this paper, we use certain norm inequalities to obtain new uncertain relations based on the Wigner-Yanase skew information. First for an arbitrary finite number of observables we derive an uncertainty relation outperforming previous lower bounds. We then propose new weighted uncertainty relations for two noncompatible observables. Two separable criteria via skew information are also obtained.
Uncertainty relations and complementarity relations are core issues in quantum mechanics and quantum information theory. By use of the generalized Wigner-Yanase-Dyson (GWYD) skew information, we derive several uncertainty and complementarity relations with respect to mutually unbiased measurements (MUMs), and general symmetric informationally complete positive operator valued measurements (SIC-POVMs), respectively. Our results include some existing ones as particular cases. We also exemplify our results by providing a detailed example.
Uncertainty relation is a core issue in quantum mechanics and quantum information theory. We introduce modified generalized Wigner-Yanase-Dyson (MGWYD) skew information and modified weighted generalizedWigner-Yanase-Dyson (MWGWYD) skew information, and establish new uncertainty relations in terms of the MGWYD skew information and MWGWYD skew information.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا