Do you want to publish a course? Click here

ANAIS: Status and prospects

129   0   0.0 ( 0 )
 Added by Maria Martinez
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

ANAIS (Annual modulation with NAI Scintillators) experiment aims to look for dark matter annual modulation with 250 kg of ultrapure NaI(Tl) scintillators at the Canfranc Underground Laboratory (LSC), in order to confirm the DAMA/LIBRA positive signal in a model-independent way. The detector will consist in an array of close-packed single modules, each of them coupled to two high efficiency Hamamatsu photomultipliers. Two 12.5 kg each NaI(Tl) crystals provided by Alpha Spectra are currently taking data at the LSC. These modules have shown an outstanding light collection efficiency (12-16 phe/keV), about the double of that from DAMA/LIBRA phase 1 detectors, which could enable reducing the energy threshold down to 1 keVee. ANAIS crystal radiopurity goals are fulfilled for 232Th and 238U chains, assuming equilibrium, and in the case of 40K, present crystals activity (although not at the required 20 ppb level) could be acceptable. However, a 210Pb contamination out-of-equilibrium has been identified and its origin traced back, so we expect it will be avoided in next prototypes. Finally, current status and prospects of the experiment considering several exposure and background scenarios are presented.



rate research

Read More

252 - J. Amare , S. Cebrian , I. Coarasa 2019
ANAIS is a direct detection dark matter experiment aiming at the testing of the DAMA/LIBRA annual modulation result, which standing for about two decades has neither been confirmed nor ruled out by any other experiment in a model independent way. ANAIS-112, consisting of 112.5 kg of sodium iodide crystals, is taking data at the Canfranc Underground Laboratory, Spain, since August 2017. This letter presents the annual modulation analysis of 1.5 years of data, amounting to 157.55 kg$times$y. We focus on the model independent analysis searching for modulation and the validation of our sensitivity prospects. ANAIS-112 data are consistent with the null hypothesis (p-values of 0.65 and 0.16 for [2-6] and [1-6] keV energy regions, respectively). The best fits for the modulation hypothesis are consistent with the absence of modulation ($S_m$=-0.0044$pm$0.0058 cpd/kg/keV and -0.0015$pm$0.0063 cpd/kg/keV, respectively). They are in agreement with our estimated sensitivity for the accumulated exposure, supporting our projected goal of reaching a 3$sigma$ sensitivity to the DAMA/LIBRA result in 5 years of data taking.
Baikal-GVD is a next generation, kilometer-scale neutrino telescope under construction in Lake Baikal. It is designed to detect astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton subarrays (clusters). The array construction started in 2015 by deployment of a reduced-size demonstration cluster named Dubna. The first cluster in its baseline configuration was deployed in 2016, the second in 2017 and the third in 2018. The full scale GVD will be an array of ~10000 light sensors with an instrumented volume of about 2 cubic km. The first phase (GVD-1) is planned to be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors in total. We describe the design of Baikal-GVD and present selected results obtained in 2015-2017.
129 - Taku Ishida 2014
In order to explore CP asymmetry in the lepton sector, a power upgrade to the neutrino experimental facility at J-PARC is a key requirement for both the Tokai to Kamioka (T2K) long-baseline neutrino oscillation experiment and a future project with Hyper-Kamiokande. Based on five years of operational experience, the facility has achieved stable operation with 230 kW beam power without significant problems on the beam-line apparatus. After successful maintenance works in 2013-2014 to replace all electromagnetic horns and a production target, the facility is now ready to accomodate a 750-kW-rated beam. Also, the possibility of achieving a few to multi-MW beam operation is discussed in detail.
This paper presents a review of the search for neutrinoless double beta decay of $^{76}$Ge with emphasis on the recent results of the GERDA experiment. It includes an appraisal of fifty years of research on this topic as well as an outlook.
OSIRIS is the optical Day One instrument, and so far the only Spanish instrument, currently operating at the GTC. Building and testing an instrument for a 8-10m-class telescope with non-previous commissioning in turn, has represented a truly unique experience. In this contribution, the current status, the last commissioning results and some future prospects are given.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا