Do you want to publish a course? Click here

Generation of Intense High-Order Vortex Harmonics

185   0   0.0 ( 0 )
 Added by Xiaomei Zhang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmitted light beams include high-order harmonics of the Laguerre-Gaussian (LG) mode when a linearly polarized LG laser pulse impinges on a solid foil. The mode of the generated LG harmonic scales with its order, in good agreement with our theoretical analysis. The intensity of the generated high-order vortex harmonics is close to the relativistic region, and the pulse duration can be in attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. Thus, the obtained intense vortex beam may have extraordinarily promising applications for high-capacity quantum information and for high-resolution detection in both spatial and temporal scales because of the addition of a new degree of freedom.



rate research

Read More

86 - Suo Tang , Naveen Kumar , 2016
Plasma high harmonics generation from an extremely intense short-pulse laser is explored by including the effects of ion motion, electron-ion collisions and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect resulting into the frequency shifting and widening of the harmonic spectra. Classical radiation reaction force slightly mitigates the frequency broadening caused by the ion motion. Based on the results and physical considerations, parameter maps highlighting optimum regions for generating a single intense attosecond pulse and coherent XUV radiations are presented.
When laser intensity exceeds 10^22W/cm^2, photons with energy above MeV can be generated from high-order harmonics process in the laser-plasma interaction. We find that under such laser intensity, QED effect plays a dominating role in the radiation pattern. Contrast to the gas and relativistic HHG processes, both the occurrence and energy of gamma-ray emission produced by QED harmonics are random and QED harmonics are usually not coherent, while the property of high intensity and ultra-short duration is conserved. Our simulation shows that the period of gamma-ray train is half of the laser period and the peak intensity is 1.4e22W/cm^2. This new harmonic production with QED effects are crucial to light-matter interaction in strong field and can be verified in experiments by 10PW laser facilities in the near future.
Relativistic surface high harmonics have been considered a unique source for the generation of intense isolated attosecond pulses in the extreme ultra-violet (XUV) and X-ray spectral range. However, its experimental realization is still a challenging task requiring identification of the optimum conditions for the generation of isolated attosecond pulses as well as their temporal characterization. Here, we demonstrate measurements in both directions. Particularly, we have made a first step towards the temporal characterization of the emitted XUV radiation by adapting the attosecond streak camera concept to identify the time domain characteristics of relativistic surface high harmonics. The results, supported by PIC simulations, set the upper limit for the averaged (over many shots) XUV duration to <6 fs, even when driven by not CEP controlled relativistic few-cycle optical pulses. Moreover, by measuring the dependence of the spectrum of the relativistic surface high harmonics on the carrier envelope phase (CEP) of the driving infrared laser field, we experimentally determined the optimum conditions for the generation of intense isolated attosecond pulses.
High order harmonic generation by extremely intense, interacting, electromagnetic waves in the quantum vacuum is investigated within the framework of the Heisenberg-Euler formalism. Two intersecting plane waves of finite duration are considered in the case of general polarizations. Detailed finite expressions are obtained for the case where only the first Poincare invariant does not vanish. Yields of high harmonics in this case are most effective.
We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained from simple strong-field approximation (SFA) or from a companion atomic target. Using these wave packets but replacing the PRCS obtained from SFA or from the atomic target by the accurate PRCS from molecules, the resulting HHG spectra are shown to agree well with the benchmark results from direct numerical solution of the time-dependent Schrodinger equation, for the case of H$_2^+$ in laser fields. The result illustrates that these powerful theoretical tools can be used for obtaining high-order harmonic spectra from molecules. More importantly, the results imply that the PRCS extracted from laser-induced HHG spectra can be used for time-resolved dynamic chemical imaging of transient molecules with temporal resolutions down to a few femtoseconds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا