Sharp eigenvalue enclosures for the perturbed angular Kerr-Newman Dirac operator


Abstract in English

A certified strategy for determining sharp intervals of enclosure for the eigenvalues of matrix differential operators with singular coefficients is examined. The strategy relies on computing the second order spectrum relative to subspaces of continuous piecewise linear functions. For smooth perturbations of the angular Kerr-Newman Dirac operator, explicit rates of convergence due to regularity of the eigenfunctions are established. Existing benchmarks are validated and sharpened by several orders of magnitude in the unperturbed setting.

Download