Do you want to publish a course? Click here

Manypolaron system in the Fractional Dimensional Space within Plasmon Pole Approximatiion

185   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The polaron binding energy and effective mass in a degenerate polar gas is calculated in the fractional-dimensional approach under plasmon pole approximation.The effect of carrier densities on the static and dynamic screening correction of the electron-phonon interaction and electron-electron interaction to the polaronic propertis is calculated from electron self-energies within the second-order perturbation method. The Hubbard local field factor has been used for the static screening correction in the polaronic properties. We found that polaronic properties decrease with increase with carrier density and dimensionality of the system.



rate research

Read More

Polaron binding energy and effective mass are calculated in the fractional-dimensional space approach using the second-order perturbation theory. The effect of carrier density on the static screening correction of the electron-phonon interaction is calculated using the Hubbards local field factor. It is found that the effective mass and the binding energy both decrease with increase in doping.
476 - Medini Padmanabhan , T. Gokmen , 2010
We study a two-dimensional electron system where the electrons occupy two conduction band valleys with anisotropic Fermi contours and strain-tunable occupation. We observe persistent quantum Hall states at filling factors $ u = 1/3$ and 5/3 even at zero strain when the two valleys are degenerate. This is reminiscent of the quantum Hall ferromagnet formed at $ u = 1$ in the same system at zero strain. In the absence of a theory for a system with anisotropic valleys, we compare the energy gaps measured at $ u = 1/3$ and 5/3 to the available theory developed for single-valley, two-spin systems, and find that the gaps and their rates of rise with strain are much smaller than predicted.
59 - A. Avella 1997
The two-dimensional Hubbard model is analyzed in the framework of the two-pole expansion. It is demonstrated that several theoretical approaches, when considered at their lowest level, are all equivalent and share the property of satisfying the conservation of the first four spectral momenta. It emerges that the various methods differ only in the way of fixing the internal parameters and that it exists a unique way to preserve simultaneously the Pauli principle and the particle-hole symmetry. A comprehensive comparison with respect to some general symmetry properties and the data from quantum Monte Carlo analysis shows the relevance of imposing the Pauli principle.
198 - S. Meyer 2010
Atomic nanowires formed by Au on Ge(001) are scrutinized for the band topology of the conduction electron system by k-resolved photoemission. Two metallic electron pockets are observed. Their Fermi surface sheets form straight lines without undulations perpendicular to the chains within experimental uncertainty. The electrons hence emerge as strictly confined to one dimension. Moreover, the system is stable against a Peierls distortion down to 10 K, lending itself for studies of the spectral function. Indications for unusually low spectral weight at the chemical potential are discussed.
We develop the plasmon-pole approximation (PPA) theory for calculating the carrier self-energy of extrinsic graphene as a function of doping density within analytical approximations to the $GW$ random phase approximation ($GW$-RPA). Our calculated self-energy shows excellent quantitative agreement with the corresponding full $GW$-RPA calculation results in spite of the simplicity of the PPA, establishing the general validity of the plasmon-pole approximation scheme. We also provide a comparison between the PPA and the hydrodynamic approximation in graphene, and comment on the experimental implications of our findings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا