Do you want to publish a course? Click here

Some insights on bicategories of fractions - II

130   0   0.0 ( 0 )
 Added by Matteo Tommasini
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We fix any bicategory $mathscr{A}$ together with a class of morphisms $mathbf{W}_{mathscr{A}}$, such that there is a bicategory of fractions $mathscr{A}[mathbf{W}_{mathscr{A}}^{-1}]$. Given another such pair $(mathscr{B},mathbf{W}_{mathscr{B}})$ and any pseudofunctor $mathcal{F}:mathscr{A}rightarrowmathscr{B}$, we find necessary and sufficient conditions in order to have an induced pseudofunctor $mathcal{G}:mathscr{A}[mathbf{W}_{mathscr{A}}^{-1}]rightarrow mathscr{B}[mathbf{W}_{mathscr{B}}^{-1}]$. Moreover, we give a simple description of $mathcal{G}$ in the case when the class $mathbf{W}_{mathscr{B}}$ is right saturated.



rate research

Read More

196 - Matteo Tommasini 2014
We fix any bicategory $mathscr{A}$ together with a class of morphisms $mathbf{W}_{mathscr{A}}$, such that there is a bicategory of fractions $mathscr{A}[mathbf{W}_{mathscr{A}}^{-1}]$. Given another such pair $(mathscr{B},mathbf{W}_{mathscr{B}})$ and any pseudofunctor $mathcal{F}:mathscr{A}rightarrowmathscr{B}$, we find necessary and sufficient conditions in order to have an induced equivalence of bicategories from $mathscr{A}[mathbf{W}_{mathscr{A}}^{-1}]$ to $mathscr{B}[mathbf{W}_{mathscr{B}}^{-1}]$. In particular, this gives necessary and sufficient conditions in order to have an equivalence from any bicategory of fractions $mathscr{A}[mathbf{W}_{mathscr{A}}^{-1}]$ to any given bicategory $mathscr{B}$.
79 - Luca Giorgetti , Wei Yuan 2020
We prove that every rigid C*-bicategory with finite-dimensional centers (finitely decomposable horizontal units) can be realized as Connes bimodules over finite direct sums of II$_1$ factors. In particular, we realize every multitensor C*-category as bimodules over a finite direct sum of II$_1$ factors.
Maps (left adjoint arrows) between Frobenius objects in a cartesian bicategory B are precisely comonoid homomorphisms and, for A Frobenius and any T in B, map(B)(T,A) is a groupoid.
This paper proves three different coherence theorems for symmetric monoidal bicategories. First, we show that in a free symmetric monoidal bicategory every diagram of 2-cells commutes. Second, we show that this implies that the free symmetric monoidal bicategory on one object is equivalent, as a symmetric monoidal bicategory, to the discrete symmetric monoidal bicategory given by the disjoint union of the symmetric groups. Third, we show that every symmetric monoidal bicategory is equivalent to a strict one. We give two topological applications of these coherence results. First, we show that the classifying space of a symmetric monoidal bicategory can be equipped with an E_{infty} structure. Second, we show that the fundamental 2-groupoid of an E_n space, n geq 4, has a symmetric monoidal structure. These calculations also show that the fundamental 2-groupoid of an E_3 space has a sylleptic monoidal structure.
129 - Niles Johnson , Donald Yau 2019
We prove a bicategorical analogue of Quillens Theorem A. As an application, we deduce the well-known result that a pseudofunctor is a biequivalence if and only if it is essentially surjective on objects, essentially full on 1-cells, and fully faithful on 2-cells.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا