Do you want to publish a course? Click here

Tunable Catalysis of Water to Peroxide with Anionic, Cationic, and Neutral Atomic Au, Ag, Pd, Rh, and Os

134   0   0.0 ( 0 )
 Added by Zineb Felfli
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fundamental anionic, cat-ionic, and neutral atomic metal predictions utilizing density functional theory calculations validate the recent discovery identifying the interplay between the resonances and the RT minimum obtained through complex angular momentum analysis as the fundamental atomic mechanism underlying nano-scale catalysis. Here we investigate the optimization of the catalytic behavior of Au, Ag, Pd, Rh, and Os atomic systems via polarization effects and conclude that anionic atomic systems are optimal and therefore ideal for catalyzing the oxidation of water to peroxide, with anionic Os being the best candidate. The discovery that cat-ionic systems increase the transition energy barrier in the synthesis of peroxide could be important as inhibitors in controlling and regulating catalysis. These findings usher in a fundamental and comprehensive atomic theoretical framework for the generation of tun-able catalytic systems.



rate research

Read More

Geometry, electronic structure, and magnetic properties of methylthiolate-stabilized Au$_{25}$L$_{18}$ and MnAu$_{24}$L$_{18}$ (L = SCH$_3$) clusters adsorbed on noble-metal (111) surfaces have been investigated by using spin-polarized density functional theory computations. The interaction between the cluster and the surface is found to be mediated by charge transfer mainly from or into the ligand monolayer. The electronic properties of the 13-atom metal core remain in all cases rather undisturbed as compared to the isolated clusters in gas phase. The Au$_{25}$L$_{18}$ cluster retains a clear HOMO - LUMO energy gap in the range of 0.7 eV to 1.0 eV depending on the surface. The ligand layer is able to decouple the electronic structure of the magnetic MnAu$_{24}$L$_{18}$ cluster from Au(111) surface, retaning a high local spin moment of close to 5 $mu_{B}$ arising from the spin-polarized Mn(3d) electrons. These computations imply that the thiolate monolayer-protected gold clusters may be used as promising building blocks with tunable energy gaps, tunneling barriers, and magnetic moments for applications in the area of electron and/or spin transport.
There has long been a discrepancy between the size distributions of Ar$_n^+$ clusters measured by different groups regarding whether or not magic numbers appear at sizes corresponding to the closure of icosahedral (sub-)shells. We show that the previously observed magic cluster size distributions are likely the result of an unresolved Ar$_n$H$^+$ component, that is, from protonated argon clusters. We find that the proton impurity gives cluster geometries that are much closer to those for neutral rare gas clusters, which are known to form icosahedral structures, than the pure cationic clusters, explaining why the mass spectra from protonated argon clusters better matches these structural models. Our results thus show that even small impurities, e.g. a single proton, can significantly influence the properties of clusters.
67 - A. Lyalin 2005
Dissociation and fission of small neutral, singly and doubly charged strontium clusters are studied by means of ab initio density functional theory methods and high-resolution time-of-flight mass spectrometry. Magic numbers for small strontium clusters possessing enhanced stability towards monomer evaporation and fission are determined. It is shown that ionization of small strontium clusters results in the alteration of the magic numbers. Thermal promotion of the Coulombic fission for the Sr_7^{2+} cluster is predicted.
122 - Evgeny Loginov , Luis F. Gomez , 2011
The utility of a continuous beam of He droplets for the assembly and surface deposition of Ag clusters, <N(Ag)> ~ 300 - 6 000, is studied with transmission electron microscopy. Images of the clusters on amorphous carbon substrates obtained at short deposition times have provided for a measure of the size distribution of the metal clusters. The average sizes of the deposited clusters are in good agreement with an energy balance based estimate of Ag cluster growth in He droplets. Measurements of the deposition rate indicate that upon impact with the surface the He-embedded cluster is attached with high probability. The stability of the deposited clusters on the substrate is discussed.
Electrostatics plays a key role in biomolecular assembly. Oppositely charged biomolecules, for instance, can co-assembled into functional units, such as DNA and histone proteins into nucleosomes and actin-binding protein complexes into cytoskeleton components, at appropriate ionic conditions. These cationic-anionic co-assemblies often have surface charge heterogeneities that result from the delicate balance between electrostatics and packing constraints. Despite their importance, the precise role of surface charge heterogeneities in the organization of cationic-anionic co-assemblies is not well understood. We show here that co-assemblies with charge heterogeneities strongly interact through polarization of the domains. We find that this leads to symmetry breaking, which is important for functional capabilities, and structural changes, which is crucial in the organization of co-assemblies. We determine the range and strength of the attraction as a function of the competition between the steric and hydrophobic constraints and electrostatic interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا