Do you want to publish a course? Click here

Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

327   0   0.0 ( 0 )
 Added by Yihui Ren
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and of human mobility. Here we show a first-principles based method for traffic prediction using a cost based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the lognormal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared to real traffic. Due to its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.



rate research

Read More

81 - Nadia Loy , Andrea Tosin 2021
In this paper, we propose a Boltzmann-type kinetic model of the spreading of an infectious disease on a network. The latter describes the connections among countries, cities or districts depending on the spatial scale of interest. The disease transmission is represented in terms of the viral load of the individuals and is mediated by social contacts among them, taking into account their displacements across the nodes of the network. We formally derive the hydrodynamic equations for the density and the mean viral load of the individuals on the network and we analyse the large-time trends of these quantities with special emphasis on the cases of blow-up or eradication of the infection. By means of numerical tests, we also investigate the impact of confinement measures, such as quarantine or localised lockdown, on the diffusion of the disease on the network.
Most previous studies of epidemic dynamics on complex networks suppose that the disease will eventually stabilize at either a disease-free state or an endemic one. In reality, however, some epidemics always exhibit sporadic and recurrent behaviour in one region because of the invasion from an endemic population elsewhere. In this paper we address this issue and study a susceptible-infected-susceptible epidemiological model on a network consisting of two communities, where the disease is endemic in one community but alternates between outbreaks and extinctions in the other. We provide a detailed characterization of the temporal dynamics of epidemic patterns in the latter community. In particular, we investigate the time duration of both outbreak and extinction, and the time interval between two consecutive inter-community infections, as well as their frequency distributions. Based on the mean-field theory, we theoretically analyze these three timescales and their dependence on the average node degree of each community, the transmission parameters, and the number of intercommunity links, which are in good agreement with simulations, except when the probability of overlaps between successive outbreaks is too large. These findings aid us in better understanding the bursty nature of disease spreading in a local community, and thereby suggesting effective time-dependent control strategies.
Empirical temporal networks display strong heterogeneities in their dynamics, which profoundly affect processes taking place on these networks, such as rumor and epidemic spreading. Despite the recent wealth of data on temporal networks, little work has been devoted to the understanding of how such heterogeneities can emerge from microscopic mechanisms at the level of nodes and links. Here we show that long-term memory effects are present in the creation and disappearance of links in empirical networks. We thus consider a simple generative modeling framework for temporal networks able to incorporate these memory mechanisms. This allows us to study separately the role of each of these mechanisms in the emergence of heterogeneous network dynamics. In particular, we show analytically and numerically how heterogeneous distributions of contact durations, of inter-contact durations and of numbers of contacts per link emerge. We also study the individual effect of heterogeneities on dynamical processes, such as the paradigmatic Susceptible-Infected epidemic spreading model. Our results confirm in particular the crucial role of the distributions of inter-contact durations and of the numbers of contacts per link.
We propose a generalized framework for the study of voter models in complex networks at the the heterogeneous mean-field (HMF) level that (i) yields a unified picture for existing copy/invasion processes and (ii) allows for the introduction of further heterogeneity through degree-selectivity rules. In the context of the HMF approximation, our model is capable of providing straightforward estimates for central quantities such as the exit probability and the consensus/fixation time, based on the statistical properties of the complex network alone. The HMF approach has the advantage of being readily applicable also in those cases in which exact solutions are difficult to work out. Finally, the unified formalism allows one to understand previously proposed voter-like processes as simple limits of the generalized model.
We develop a theoretical framework for the study of epidemic-like social contagion in large scale social systems. We consider the most general setting in which different communication platforms or categories form multiplex networks. Specifically, we propose a contact-based information spreading model, and show that the critical point of the multiplex system associated to the active phase is determined by the layer whose contact probability matrix has the largest eigenvalue. The framework is applied to a number of different situations, including a real multiplex system. Finally, we also show that when the system through which information is disseminating is inherently multiplex, working with the graph that results from the aggregation of the different layers is flawed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا