Do you want to publish a course? Click here

The LIGO Open Science Center

460   0   0.0 ( 0 )
 Added by Michele Vallisneri
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The LIGO Open Science Center (LOSC) fulfills LIGOs commitment to release, archive, and serve LIGO data in a broadly accessible way to the scientific community and to the public, and to provide the information and tools necessary to understand and use the data. In August 2014, the LOSC published the full dataset from Initial LIGOs S5 run at design sensitivity, the first such large-scale release and a valuable testbed to explore the use of LIGO data by non-LIGO researchers and by the public, and to help teach gravitational-wave data analysis to students across the world. In addition to serving the S5 data, the LOSC web portal (losc.ligo.org) now offers documentation, data-location and data-quality queries, tutorials and example code, and more. We review the mission and plans of the LOSC, focusing on the S5 data release.



rate research

Read More

(abridged for arXiv) With the first direct detection of gravitational waves, the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) has initiated a new field of astronomy by providing an alternate means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual classifier. The resulting classification and characterization should help LIGO scientists to identify causes of glitches and subsequently eliminate them from the data or the detector entirely, thereby improving the rate and accuracy of gravitational-wave observations. We demonstrate these methods using a small subset of data from LIGOs first observing run.
The global network of gravitational-wave detectors has completed three observing runs with $sim 50$ detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Multiple detectors operating at different parts of the globe will provide several pairs of interferometers with longer baselines and an increased network SNR. This will improve the sky localisation of GW events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO Global Network (LGN) in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics.
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015. GW150914 was observed with a matched filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {sigma}.
227 - Leo P. Singer 2015
The Advanced LIGO and Virgo experiments are poised to detect gravitational waves (GWs) directly for the first time this decade. The ultimate prize will be joint observation of a compact binary merger in both gravitational and electromagnetic channels. However, GW sky locations that are uncertain by hundreds of square degrees will pose a challenge. I describe a real-time detection pipeline and a rapid Bayesian parameter estimation code that will make it possible to search promptly for optical counterparts in Advanced LIGO. Having analyzed a comprehensive population of simulated GW sources, we describe the sky localization accuracy that the GW detector network will achieve as each detector comes online and progresses toward design sensitivity. Next, in preparation for the optical search with the intermediate Palomar Transient Factory (iPTF), we have developed a unique capability to detect optical afterglows of gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Burst Monitor (GBM). Its comparable error regions offer a close parallel to the Advanced LIGO problem, but Fermis unique access to MeV-GeV photons and its near all-sky coverage may allow us to look at optical afterglows in a relatively unexplored part of the GRB parameter space. We present the discovery and broadband follow-up observations of eight GBM-iPTF afterglows. Two of the bursts are at low redshift, are sub-luminous with respect to standard cosmological bursts, and have spectroscopically confirmed broad-line type Ic supernovae. These two bursts are possibly consistent with mildly relativistic shocks breaking out from the progenitor envelopes rather than the standard mechanism of internal shocks within an ultra-relativistic jet. On a technical level, the GBM-iPTF effort is a prototype for locating and observing optical counterparts of GW events in Advanced LIGO with the Zwicky Transient Facility.
We present a novel Machine Learning (ML) based strategy to search for compact binary coalescences (CBCs) in data from ground-based gravitational wave (GW) observatories. This is the first ML-based search that not only recovers all the binary black hole mergers in the first GW transients calalog (GWTC-1), but also makes a clean detection of GW151216, which was not significant enough to be included in the catalogue. Moreover, we achieve this by only adding a new coincident ranking statistic (MLStat) to a standard analysis that was used for GWTC-1. In CBC searches, reducing contamination by terrestrial and instrumental transients, which create a loud noise background by triggering numerous false alarms, is crucial to improving the sensitivity for detecting true events. The sheer volume of data and and large number of expected detections also prompts the use of ML techniques. We perform transfer learning to train InceptionV3, a pre-trained deep neural network, along with curriculum learning to distinguish GW signals from noisy events by analysing their continuous wavelet transform (CWT) maps. MLStat incorporates information from this ML classifier into the standard coincident search likelihood used by the conventional search. This leads to at least an order of magnitude improvement in the inverse false-alarm-rate (IFAR) for the previously low significance events GW151012, GW170729 and GW151216. The confidence in detection of GW151216 is further strengthened by performing its parameter estimation using SEOBNRv4HM_ROM. Considering the impressive ability of the statistic to distinguish signals from glitches, the list of marginal events from MLStat could be quite reliable for astrophysical population studies and further follow-up. This work demonstrates the immense potential and readiness of MLStat for finding new sources in current data and possibility of its adaptation in similar searches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا