Do you want to publish a course? Click here

Differential interferometry of QSO broad line regions I: improving the reverberation mapping model fits and black hole mass estimates

118   0   0.0 ( 0 )
 Added by Suvendu Rakshit
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reverberation mapping estimates the size and kinematics of broad line regions (BLR) in Quasars and type I AGNs. It yields size-luminosity relation, to make QSOs standard cosmological candles, and mass-luminosity relation to study the evolution of black holes and galaxies. The accuracy of these relations is limited by the unknown geometry of the BLR clouds distribution and velocities. We analyze the independent BLR structure constraints given by super-resolving differential interferometry. We developed a three-dimensional BLR model to compute all differential interferometry and reverberation mapping signals. We extrapolate realistic noises from our successful observations of the QSO 3C273 with AMBER on the VLTI. These signals and noises quantify the differential interferometry capacity to discriminate and measure BLR parameters including angular size, thickness, spatial distribution of clouds, local-to-global and radial-to-rotation velocity ratios, and finally central black hole mass and BLR distance. A Markov Chain Monte Carlo model-fit, of data simulated for various VLTI instruments, gives mass accuracies between 0.06 and 0.13 dex, to be compared to 0.44 dex for reverberation mapping mass-luminosity fits. We evaluate the number of QSOs accessible to measures with current (AMBER), upcoming (GRAVITY) and possible (OASIS with new generation fringe trackers) VLTI instruments. With available technology, the VLTI could resolve more than 60 BLRs, with a luminosity range larger than four decades, sufficient for a good calibration of RM mass-luminosity laws, from an analysis of the variation of BLR parameters with luminosity.



rate research

Read More

561 - Sha-Sha Li , Sen Yang , Zi-Xu Yang 2021
We report the results of a multi-year spectroscopic and photometric monitoring campaign of two luminous quasars, PG~0923+201 and PG~1001+291, both located at the high-luminosity end of the broad-line region (BLR) size-luminosity relation with optical luminosities above $10^{45}~{rm erg~s^{-1}}$. PG~0923+201 is for the first time monitored, and PG~1001+291 was previously monitored but our campaign has a much longer temporal baseline. We detect time lags of variations of the broad H$beta$, H$gamma$, Fe {sc ii} lines with respect to those of the 5100~{AA} continuum. The velocity-resolved delay map of H$beta$ in PG~0923+201 indicates a complicated structure with a mix of Keplerian disk-like motion and outflow, and the map of H$beta$ in PG~1001+291 shows a signature of Keplerian disk-like motion. Assuming a virial factor of $f_{rm BLR}=1$ and FWHM line widths, we measure the black hole mass to be $118_{-16}^{+11}times 10^7 M_{odot}$ for PG~0923+201 and $3.33_{-0.54}^{+0.62}times 10^7 M_{odot}$ for PG~1001+291. Their respective accretion rates are estimated to be $0.21_{-0.07}^{+0.06} times L_{rm Edd},c^{-2}$ and $679_{-227}^{+259}times L_{rm Edd},c^{-2}$, indicating that PG~0923+201 is a sub-Eddington accretor and PG~1001+291 is a super-Eddington accretor. While the H$beta$ time lag of PG~0923+201 agrees with the size-luminosity relation, the time lag of PG~1001+291 shows a significant deviation, confirming that in high-luminosity AGN the BLR size depends on both luminosity and Eddington ratio. Black hole mass estimates from single AGN spectra will be over-estimated at high luminosities and redshifts if this effect is not taken into account.
101 - Suvendu Rakshit 2020
Reverberation results of a flat spectrum radio quasar PKS 1510-089 are presented from 8.5-years long spectroscopic monitoring carried out in 9 observing seasons between December 2008 to June 2017 at Steward Observatory. Optical spectra show strong H$beta$, H$gamma$, and Fe II emission lines overlaying on a blue continuum. All the continuum and emission line light curves show significant variability with a fractional root-mean-square variation of $37.30pm0.06$% ($f_{5100}$), $11.88pm0.29$% (H$beta$) and $9.61pm0.71$% (H$gamma$), however, along with thermal radiation from accretion disk non-thermal emission from jet also contribute to $f_{5100}$. Several methods of time series analysis (ICCF, DCF, von Neumann, Bartels, JAVELIN, $chi^2$) are used to measure lag between continuum and line light curves. The observed frame BLR size is found to be $61.1^{+4.0}_{-3.2}$ ($64.7^{+27.1}_{-10.6}$) light-days for H$beta$ (H$gamma$). Using $sigma_{mathrm{line}}$ of $1262pm247$ km s$^{-1}$ measured from the rms spectrum, the black hole mass of PKS 1510-089 is estimated to be $5.71^{+0.62}_{-0.58} times 10^{7} M_{odot}$.
We report results of the first reverberation mapping campaign of I Zwicky 1 during $2014$-$2016$, which showed unambiguous reverberations of the broad H$beta$ line emission to the varying optical continuum. From analysis using several methods, we obtain a reverberation lag of $tau_{rm Hbeta}=37.2^{+4.5}_{-4.9},$ days. Taking a virial factor of $f_{_{rm BLR}}=1$, we find a black hole mass of $M_{bullet}=9.30_{-1.38}^{+1.26}times 10^6 M_{odot}$ from the mean spectra. The accretion rate is estimated to be $203.9_{-65.8}^{+61.0},L_{rm Edd}c^{-2}$, suggesting a super-Eddington accretor, where $L_{rm Edd}$ is the Eddington luminosity and $c$ is the speed of light. By decomposing {it Hubble Space Telescope} images, we find that the stellar mass of the bulge of its host galaxy is $log (M_{rm bulge}/M_{odot}) = rm 10.92pm 0.07$. This leads to a black hole to bulge mass ratio of $sim 10^{-4}$, which is significantly smaller than that of classical bulges and elliptical galaxies. After subtracting the host contamination from the observed luminosity, we find that I Zw 1 follows the empirical $R_{rm BLR}propto L_{5100}^{1/2}$ relation.
We present the results from a spectroscopic monitoring campaign to obtain reverberation-mapping measurements and investigate the broad-line region kinematics for active galactic nuclei (AGN) of Mrk~817 and NGC~7469. This campaign was undertaken with the Lijiang 2.4-meter telescope, the median spectroscopic sampling is 2.0 days for Mrk~817 and 1.0 days for NGC~7469. We detect time lags of the broad emission lines including H$beta$, H$gamma$, He~{sc ii} and He~{sc i} for both AGNs, and including Fe~{sc ii} for Mrk~817 with respect to the varying AGN continuum at 5100~AA. Investigating the relationship between line widths and time lags of the broad emission lines, we find that the BLR dynamics of Mrk~817 and NGC~7469 are consistent with the virial prediction. We estimate the masses of central supermassive black hole (SMBH) and the accretion rates of both AGNs. Using the data of this campaign, we construct the velocity-resolved lag profiles of the broad H$gamma$, H$beta$, and He~{sc i} lines for Mrk~817, which show almost the same kinematic signatures that the time lags in the red wing are slightly larger than the time lags in the blue wing. For NGC~7469, we only clearly construct the velocity-resolved lag profiles of the broad H$gamma$ and H$beta$, which show very similar kinematic signatures to the BLR of Mrk~817. These signatures indicate that the BLR of Keplerian motion in both AGNs seemingly has outflowing components during the monitoring period. We discuss the kinematics of the BLR and the measurements including SMBH mass and accretion rates.
Black hole (BH) masses that have been measured by reverberation mapping in active galaxies fall significantly below the correlation between bulge luminosity and BH mass determined from spatially resolved kinematics of nearby normal galaxies. This discrepancy has created concern that one or both techniques suffer from systematic errors. We show that BH masses from reverberation mapping are consistent with the recently discovered relationship between BH mass and galaxy velocity dispersion. Therefore the bulge luminosities are the probable source of the disagreement, not problems with either method of mass measurement. This result underscores the utility of the BH mass -- velocity dispersion relationship. Reverberation mapping can now be applied with increased confidence to galaxies whose active nuclei are too bright or whose distances are too large for BH searches based on spatially resolved kinematics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا