Do you want to publish a course? Click here

Benchmark stars for Gaia: fundamental properties of the Population II star HD140283 from interferometric, spectroscopic and photometric data

133   0   0.0 ( 0 )
 Added by Orlagh Creevey
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We determined the fundamental properties of HD 140283 by obtaining new interferometric and spectroscopic measurements and combining them with photometry from the literature. The interferometric measurements were obtained using the visible interferometer VEGA on the CHARA array and we determined a 1D limb-darkened angular diameter of 0.353 +/- 0.013 milliarcseconds. Using photometry from the literature we derived the bolometric flux with two solutions: a zero-reddening one of Fbol = 3.890 +/- 0.066 1E-8 erg/s/cm2 and a solution with a maximum of Av = 0.1 mag, Fbol= 4.220 +/- 0.067 1E-8 erg/s/cm2. The interferometric Teff is thus 5534 +/- 103 K or 5647 +/- 105 K and its radius is R = 2.21 +/- 0.08 Rsol. Spectroscopic measurements of HD140283 were obtained using HARPS, NARVAL, and UVES and a 1D LTE analysis of H-alpha line wings yields Teff(Halpha) = 5626 +/- 75 K. Using fine-tuned stellar models including diffusion of elements we then determined the mass M and age t of HD140283. Once the metallicity has been fixed, the age of the star depends on M, initial helium abundance Yi and mixing-length parameter alpha, only two of which are independent. We need to adjust alpha to much lower values than the solar one (~2) in order to fit the observations, and if Av = 0.0 mag then 0.5 < alpha < 1. We give an equation to estimate t from M, Yi (alpha) and Av. Establishing a reference alpha = 1.00 and adopting Yi = 0.245 we derive a mass and age of HD140283: M = 0.780 +/- 0.010 Msol and t = 13.7 +/- 0.7 Gyr (Av = 0.0) or M = 0.805 +/- 0.010 Msol and t = 12.2 +/- 0.6 Gyr (Av=0.1 mag). Our stellar models yield an initial metallicity of [Z/X]i = -1.70 and logg = 3.65 +/- 0.03. Asteroseismic observations are critical for overcoming limitations in our results.



rate research

Read More

Gaia benchmark stars are selected to be calibration stars for different spectroscopic surveys. Very high-quality and homogeneous spectroscopic data for these stars are therefore required. We collected ultrahigh-resolution ESPRESSO spectra for 30 of the 34 Gaia benchmark stars and made them public. We quantify the consistency of the results that are obtained with different high-, and ultrahigh-resolution spectrographs. We also comprehensively studied the effect of using different spectral reduction products of ESPRESSO on the final spectroscopic results. We used ultrahigh- and high-resolution spectra obtained with the ESPRESSO, PEPSI, and HARPS spectrographs to measure spectral line characteristics (line depth; line width; and EW) and determined stellar parameters and abundances for a subset of 11 Gaia benchmark stars. We used the ARES code for automatic measurements of the spectral line parameters. Our measurements reveal that the same individual spectral lines measured from adjacent 2D echelle orders of ESPRESSO spectra differ slightly in line depth and line width. When a long list of spectral lines is considered, the EW measurements based on the 2D and 1D (the final spectral product) ESPRESSO spectra agree very well. The EW spectral line measurements based on the ESPRESSO, PEPSI, and HARPS spectra also agree to within a few percent. However, we note that the lines appear deeper in the ESPRESSO spectra than in PEPSI and HARPS. The stellar parameters derived from each spectrograph by combining the several available spectra agree well overall. We conclude that the ESPRESSO, PEPSI, and HARPS spectrographs can deliver spectroscopic results that are sufficiently consistent for most of the science cases in stellar spectroscopy. However, we found small but important differences in the performance of the three spectrographs that can be crucial for specific science cases.
We have estimated fundamental parameters for a sample of co-moving stars observed by $Gaia$ and identified by Oh et al. (2017). We matched the $Gaia$ observations to the 2MASS and WISE catalogs and fit MIST isochrones to the data, deriving estimates of the mass, radius, [Fe/H], age, distance and extinction to 9,754 stars in the original sample of 10,606 stars. We verify these estimates by comparing our new results to previous analyses of nearby stars, examining fiducial cluster properties, and estimating the power-law slope of the local present-day mass function. A comparison to previous studies suggests that our mass estimates are robust, while metallicity and age estimates are increasingly uncertain. We use our calculated masses to examine the properties of binaries in the sample, and show that separation of the pairs dominates the observed binding energies and expected lifetimes.
We present a comprehensive analysis of DB white dwarfs drawn from the Sloan Digital Sky Survey, based on model fits to $ugriz$ photometry and medium resolution spectroscopy from the SDSS. We also take advantage of the exquisite trigonometric parallax measurements recently obtained by the Gaia mission. Using the so-called photometric and spectroscopic techniques, we measure the atmospheric and physical parameters of each object in our sample ($T_{rm eff}$, $log g$, H/He, Ca/He, $R$, $M$), and compare the values obtained from both techniques in order to assess the precision and accuracy of each method. We then explore in great detail the surface gravity, stellar mass, and hydrogen abundance distributions of DB white dwarfs as a function of effective temperature. We present some clear evidence for a large population of unresolved double degenerate binaries composed of DB+DB and even DB+DA white dwarfs. In the light of our results, we finally discuss the spectral evolution of DB white dwarfs, in particular the evolution of the DB-to-DA ratio as a function of $T_{rm eff}$, and we revisit the question of the origin of hydrogen in DBA white dwarfs.
Stellar models applied to large stellar surveys of the Milky Way need to be properly tested against a sample of stars with highly reliable fundamental stellar parameters. We have established a program aiming to deliver such a sample. We present new fundamental stellar parameters of nine dwarfs that will be used as benchmarks for large stellar surveys. One of these stars is the solar-twin 18Sco, which is one of the Gaia-ESO benchmarks. The goal is to reach a precision of 1% in Teff. This precision is important for accurate determinations of the full set of fundamental parameters and abundances of stars observed by the surveys. We observed HD131156 (xiBoo), HD146233 (18Sco), HD152391, HD173701, HD185395 (thetaCyg), HD186408 (16CygA), HD186427 (16CygB), HD190360 and HD207978 (15Peg) using the high angular resolution optical interferometric instrument PAVO/CHARA. We derived limb-darkening corrections from 3D model atmospheres and determined Teff directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE spectrograph and estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analyses of unblended lines of neutral and singly ionized iron. For eight of the nine stars, we measure the Teff less than 1%, and for one star better than 2%. We determined the median uncertainties in logg and Fe/H as 0.015dex and 0.05dex, respectively. This study presents updated fundamental stellar parameters of nine dwarfs that can be used as a new set of benchmarks. All parameters were based on consistently combining interferometric observations, 3D limb-darkening modelling and spectroscopic analysis. The next paper will extend our sample to metal-rich giants.
Effective temperatures and luminosities are calculated for 1,475,921 Tycho-2 and 107,145 Hipparcos stars, based on distances from Gaia Data Release 1. Parameters are derived by comparing multi-wavelength archival photometry to BT-Settl model atmospheres. The 1-sigma uncertainties for the Tycho-2 and Hipparcos stars are +/-137 K and +/-125 K in temperature and +/-35 per cent and +/-19 per cent in luminosity. The luminosity uncertainty is dominated by that of the Gaia parallax. Evidence for infrared excess between 4.6 and 25 microns is found for 4256 stars, of which 1883 are strong candidates. These include asymptotic giant branch (AGB) stars, Cepheids, Herbig Ae/Be stars, young stellar objects, and other sources. We briefly demonstrate the capabilities of this dataset by exploring local interstellar extinction, the onset of dust production in AGB stars, the age and metallicity gradients of the solar neighbourhood and structure within the Gould Belt. We close by discussing the potential impact of future Gaia data releases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا