We have identified a novel phase stability mechanism from the intracavity field-induced self-organization of a fast-moving molecular beam into travelling molecular packets in the bad cavity regime, which is then used to decelerate the molecular packets by feedback-controlled time-varying laser pumps to the cavity. We first applied the linear stability analysis to derive an expression for this self-organization in the adiabatic limit and show that the self-organization of the beam leads to the formation of travelling molecular packets, which in turn function as a dynamic Bragg grating, thus modulating periodically the intracavity field by superradiant scattering of the pump photons. The modulation encodes the position information of the molecular packets into the output of the intracavity field instantaneously. We then applied time-varying laser pumps that are automatically switched by the output of the intracavity field to slow down the molecular packets via a feedback mechanism and found that most of the molecules in the molecular packets are decelerated to zero central velocity after tens of stages. Our cavity-based deceleration proposal works well in the bad cavity regime, which is very different from the conventional cavity- based cooling strategies where a good cavity is preferred. Practical issues in realizing the proposal are also discussed.