No Arabic abstract
Motivated by recent experiments, we analyse the stability of a three-dimensional Bose-Einstein condensate (BEC) loaded in a periodically driven one-dimensional optical lattice. Such periodically driven systems do not have a thermodynamic ground state, but may have a long-lived steady state which is an eigenstate of a Floquet Hamiltonian. We explore collisional instabilities of the Floquet ground state which transfer energy into the transverse modes. We calculate decay rates, finding that the lifetime scales as the inverse square of the scattering length and inverse of the peak three- dimensional density. These rates can be controlled by adding additional transverse potentials.
Motivated by recent experimental observations (C.V. Parker {it et al.}, Nature Physics, {bf 9}, 769 (2013)), we analyze the stability of a Bose-Einstein condensate (BEC) in a one-dimensional lattice subjected to periodic shaking. In such a system there is no thermodynamic ground state, but there may be a long-lived steady-state, described as an eigenstate of a Floquet Hamiltonian. We calculate how scattering processes lead to a decay of the Floquet state. We map out the phase diagram of the system and find regions where the BEC is stable and regions where the BEC is unstable against atomic collisions. We show that Parker et al. perform their experiment in the stable region, which accounts for the long life-time of the condensate ($sim$ 1 second). We also estimate the scattering rate of the bosons in the region where the BEC is unstable.
We study the ground-state behavior of a Bose-Einstein Condensate (BEC) in a Raman-laser-assisted one-dimensional (1D) optical lattice potential forming a multilayer system. We find that, such system can be described by an effective model with spin-orbit coupling (SOC) of pseudospin $(N-1)/2$, where $N$ is the number of layers. Due to the intricate interplay between atomic interactions, SOC and laser-assisted tunnelings, the ground-state phase diagrams generally consist of three phases -- a stripe, a plane wave and a normal phase with zero-momentum, touching at a quantum tricritical point. More important, even though the single-particle states only minimize at zero-momentum for odd $N$, the many-body ground states may still develop finite momenta. The underlying mechanisms are elucidated. Our results provide an alternative way to realize an effective spin-orbit coupling of Bose gas with the Raman-laser-assisted optical lattice, and would also be beneficial to the studies on SOC effects in spinor Bose systems with large spin.
We explore the effect of transverse confinement on the stability of a Bose-Einstein condensate (BEC) loaded in a shaken one-dimensional or two-dimensional square lattice. We calculate the decay rate from two-particle collisions. We predict that if the transverse confinement exceeds a critical value, then, for appropriate shaking frequencies, the condensate is stable against scattering into transverse directions.
Motivated by recent experiments, we calculate particle emission from a Bose-Einstein condensate trapped in a single deep well of a one-dimensional lattice when the interaction strength is modulated. In addition to pair emission, which has been widely studied, we observe single-particle emission. Within linear response, we are able to write closed-form expressions for the single-particle emission rates and reduce the pair emission rates to one-dimensional integrals. The full nonlinear theory of single-particle emission is reduced to a single variable integrodifferential equation, which we numerically solve.
The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condensate loaded into a translating optical lattice by observing its dynamical stability, and develop an effective band structure that provides a theoretical understanding of the locations of the band edges. This system presents exciting new opportunities for engineering condensed-matter analogs using the flexible toolbox of ultra-cold quantum gases.