The Growth and Distortion Theorems for Slice Monogenic Functions


Abstract in English

The sharp growth and distortion theorems are established for slice monogenic extensions of univalent functions on the unit disc $mathbb Dsubset mathbb C$ in the setting of Clifford algebras, based on a new convex combination identity. The analogous results are also valid in the quaternionic setting for slice regular functions and we can even prove the Koebe type one-quarter theorem in this case. Our growth and distortion theorems for slice regular (slice monogenic) extensions to higher dimensions of univalent holomorphic functions hold without extra geometric assumptions, in contrast to the setting of several complex variables in which the growth and distortion theorems fail in general and hold only for some subclasses with the starlike or convex assumption.

Download