Do you want to publish a course? Click here

The Growth and Distortion Theorems for Slice Monogenic Functions

137   0   0.0 ( 0 )
 Added by Xieping Wang
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The sharp growth and distortion theorems are established for slice monogenic extensions of univalent functions on the unit disc $mathbb Dsubset mathbb C$ in the setting of Clifford algebras, based on a new convex combination identity. The analogous results are also valid in the quaternionic setting for slice regular functions and we can even prove the Koebe type one-quarter theorem in this case. Our growth and distortion theorems for slice regular (slice monogenic) extensions to higher dimensions of univalent holomorphic functions hold without extra geometric assumptions, in contrast to the setting of several complex variables in which the growth and distortion theorems fail in general and hold only for some subclasses with the starlike or convex assumption.



rate research

Read More

103 - Zhenghua Xu , Xieping Wang 2016
In this paper we prove two Bloch type theorems for quaternionic slice regular functions. We first discuss the injective and covering properties of some classes of slice regular functions from slice regular Bloch spaces and slice regular Bergman spaces, respectively. And then we show that there exits a universal ball contained in the image of the open unit ball $mathbb{B}$ in quaternions $mathbb{H}$ through the slice regular rotation $widetilde{f}_{u}$ of each slice regular function $f:overline{mathbb{B}}rightarrow mathbb{H}$ with $f(0)=1$ for some $uin partialmathbb{B}$.
In this paper, we study the (possible) solutions of the equation $exp_{*}(f)=g$, where $g$ is a slice regular never vanishing function on a circular domain of the quaternions $mathbb{H}$ and $exp_{*}$ is the natural generalization of the usual exponential to the algebra of slice regular functions. Any function $f$ which satisfies $exp_{*}(f)=g$ is called a $*$-logarithm of $g$. We provide necessary and sufficient conditions, expressed in terms of the zero set of the ``vector part $g_{v}$ of $g$, for the existence of a $*$-logarithm of $g$, under a natural topological condition on the domain $Omega$. By the way, we prove an existence result if $g_{v}$ has no non-real isolated zeroes; we are also able to give a comprehensive approach to deal with more general cases. We are thus able to obtain an existence result when the non-real isolated zeroes of $g_{v}$ are finite, the domain is either the unit ball, or $mathbb{H}$, or $mathbb{D}$ and a further condition on the ``real part $g_{0}$ of $g$ is satisfied (see Theorem 6.19 for a precise statement). We also find some unexpected uniqueness results, again related to the zero set of $g_{v}$, in sharp contrast with the complex case. A number of examples are given throughout the paper in order to show the sharpness of the required conditions.
Since 2006 the theory of slice hyperholomorphic functions and the related spectral theory on the S-spectrum have had a very fast development. This new spectral theory based on the S-spectrum has applications for example in the formulation of quaternionic quantum mechanics, in Schur analysis and in fractional diffusion problems. The notion of poly slice analytic function has been recently introduced for the quaternionic setting. In this paper we study the theory of poly slice monogenic functions and the associated functional calculus, called PS-functional calculus, which is the polyanalytic version of the S-functional calculus. Also for this poly monogenic functional calculus we use the notion of S-spectrum.
149 - Guangbin Ren , Xieping Wang 2015
Slice regular functions have been extensively studied over the past decade, but much less is known about their boundary behavior. In this paper, we initiate the study of Julia theory for slice regular functions. More specifically, we establish the quaternion
A boundary Nevanlinna-Pick interpolation problem is posed and solved in the quaternionic setting. Given nonnegative real numbers $kappa_1, ldots, kappa_N$, quaternions $p_1, ldots, p_N$ all of modulus $1$, so that the $2$-spheres determined by each point do not intersect and $p_u eq 1$ for $u = 1,ldots, N$, and quaternions $s_1, ldots, s_N$, we wish to find a slice hyperholomorphic Schur function $s$ so that $$lim_{substack{rrightarrow 1 rin(0,1)}} s(r p_u) = s_uquad {rm for} quad u=1,ldots, N,$$ and $$lim_{substack{rrightarrow 1 rin(0,1)}}frac{1-s(rp_u)overline{s_u}}{1-r}lekappa_u,quad {rm for} quad u=1,ldots, N.$$ Our arguments relies on the theory of slice hyperholomorphic functions and reproducing kernel Hilbert spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا