Do you want to publish a course? Click here

Accurate and robust unitary transformation of a high-dimensional quantum system

177   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum control in large dimensional Hilbert spaces is essential for realizing the power of quantum information processing. For closed quantum systems the relevant input/output maps are unitary transformations, and the fundamental challenge becomes how to implement these with high fidelity in the presence of experimental imperfections and decoherence. For two-level systems (qubits) most aspects of unitary control are well understood, but for systems with Hilbert space dimension d>2 (qudits), many questions remain regarding the optimal design of control Hamiltonians and the feasibility of robust implementation. Here we show that arbitrary, randomly chosen unitary transformations can be efficiently designed and implemented in a large dimensional Hilbert space (d=16) associated with the electronic ground state of atomic 133Cs, achieving fidelities above 0.98 as measured by randomized benchmarking. Generalizing the concepts of inhomogeneous control and dynamical decoupling to d>2 systems, we further demonstrate that these qudit unitary maps can be made robust to both static and dynamic perturbations. Potential applications include improved fault-tolerance in universal quantum computation, nonclassical state preparation for high-precision metrology, implementation of quantum simulations, and the study of fundamental physics related to open quantum systems and quantum chaos.



rate research

Read More

The exponential growth in Hilbert space with increasing size of a quantum system means that accurately characterising the system becomes significantly harder with system dimension d. We show that self-guided tomography is a practical, efficient, and robust technique of measuring higher-dimensional quantum states. The achieved fidelities are over 99.9% for qutrits (d=3) and ququints (d=5), and 99.1% for quvigints (d=20), the highest values ever realised for qudits. We demonstrate robustness against experimental sources of noise, both statistical and environmental. The technique is applicable to any higher-dimensional system, from a collection of qubits through to individual qudits, and any physical realisation, be it photonic, superconducting, ionic, or spin.
211 - Weizhou Cai , Jiaxiu Han , Ling Hu 2020
The ability to manipulate quantum systems lies at the heart of the development of quantum technology. The ultimate goal of quantum control is to realize arbitrary quantum operations (AQuOs) for all possible open quantum system dynamics. However, the demanding extra physical resources impose great obstacles. Here, we experimentally demonstrate a universal approach of AQuO on a photonic qudit with minimum physical resource of a two-level ancilla and a $log_{2}d$-scale circuit depth for a $d$-dimensional system. The AQuO is then applied in quantum trajectory simulation for quantum subspace stabilization and quantum Zeno dynamics, as well as incoherent manipulation and generalized measurements of the qudit. Therefore, the demonstrated AQuO for complete quantum control would play an indispensable role in quantum information science.
Analog quantum simulation is widely considered a step on the path to fault tolerant quantum computation. If based on current noisy hardware, the accuracy of an analog simulator will degrade after just a few time steps, especially when simulating complex systems that are likely to exhibit quantum chaos. Here we describe a small, highly accurate quantum simulator and its use to run high fidelity simulations of three different model Hamiltonians for $>100$ time steps. While not scalable to exponentially large Hilbert spaces, this platform provides the accuracy and programmability required for systematic exploration of the interplay between dynamics, imperfections, and accuracy in quantum simulation.
In classical computational chemistry, the coupled-cluster ansatz is one of the most commonly used $ab~initio$ methods, which is critically limited by its non-unitary nature. The unitary modification as an ideal solution to the problem is, however, extremely inefficient in classical conventional computation. Here, we provide the first experimental evidence that indeed the unitary version of the coupled cluster ansatz can be reliably performed in physical quantum system, a trapped ion system. We perform a simulation on the electronic structure of a molecular ion (HeH$^+$), where the ground-state energy surface curve is probed, energies of excited-states are studied and the bond-dissociation is simulated non-perturbatively. Our simulation takes advantages from quantum computation to overcome the intrinsic limitations in classical computation and our experimental results indicate that the method is promising for preparing molecular ground-states for quantum simulation.
In high dimensional quantum communication networks, quantum frequency convertor (QFC) is indispensable as an interface in the frequency domain. For example, many QFCs have been built to link atomic memories and fiber channels. However, almost all of QFCs work in a two-dimensional space. It is still a pivotal challenge to construct a high-quality QFC for some complex quantum states, e.g., a high dimensional single-photon state that refers to a qudit. Here, we firstly propose a high-dimensional QFC for an orbital angular momentum qudit via sum frequency conversion with a flat top beam pump. As a proof-of-principle demonstration, we realize quantum frequency
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا