Coherent coupling between ferromagnetic magnon and superconducting qubit


Abstract in English

Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending in macroscopic dimensions. Magnon is a quantum of an elementary excitation in the ordered spin system, such as ferromagnet. Being low dissipative, dynamics of magnons in ferromagnetic insulators has been extensively studied and widely applied for decades in the contexts of ferromagnetic resonance, and more recently of Bose-Einstein condensation as well as spintronics. Moreover, towards hybrid systems for quantum memories and transducers, coupling of magnons and microwave photons in a resonator have been investigated. However, quantum-state manipulation at the single-magnon level has remained elusive because of the lack of anharmonic element in the system. Here we demonstrate coherent coupling between a magnon excitation in a millimetre-sized ferromagnetic sphere and a superconducting qubit, where the interaction is mediated by the virtual photon excitation in a microwave cavity. We obtain the coupling strength far exceeding the damping rates, thus bringing the hybrid system into the strong coupling regime. Furthermore, we find a tunable magnon-qubit coupling scheme utilising a parametric drive with a microwave. Our approach provides a versatile tool for quantum control and measurement of the magnon excitations and thus opens a new discipline of quantum magnonics.

Download