We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6*10^{-8} to 6.9*10^{-10}. The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.
We report on the realization of a novel fiber-optic radio frequency (RF) transfer scheme with the bidirectional frequency division multiplexing (FDM) dissemination technique. Here, the proper bidirectional frequency map used in the forward and backward directions for suppressing the backscattering noise and ensuring the symmetry of the bidirectional transfer RF signals within one telecommunication channel. We experimentally demonstrated a 0.9 GHz signal transfer over a 120 km optical link with the relative frequency stabilities of 2.2E-14 at 1 s and 4.6E-17 at 20,000 s. The implementation of phase noise compensation at the remote site has the capability to perform RF transfer over a branching fiber network with the proposed technique as needed by large-scale scientific experiments.
Terrestrial laser interferometers for gravitational-wave detection made the landmark first detection of gravitational waves in 2015. We provide an overview of the history of how these laser interferometers prevailed as the most promising technology in the search for gravitational waves. We describe their working principles and their limitations, and provide examples of some of the most important technologies that enabled their construction. We introduce each of the four large-scale laser interferometer gravitational-wave detectors in operation around the world today and provide a brief outlook for the future of ground-based detectors.
Optical frequency stabilization is a critical component for precision scientific systems including quantum sensing, precision metrology, and atomic timekeeping. Ultra-high quality factor photonic integrated optical resonators are a prime candidate for reducing their size, weight and cost as well as moving these systems on chip. However, integrated resonators suffer from temperature-dependent resonance drift due to the large thermal response as well as sensitivity to external environmental perturbations. Suppression of the cavity resonance drift can be achieved using precision interrogation of the cavity temperature through the dual-mode optical thermometry. This approach enables measurement of the cavity temperature change by detecting the resonance difference shift between two polarization or optical frequency modes. Yet this approach has to date only been demonstrated in bulk-optic whispering gallery mode and fiber resonators. In this paper, we implement dual-mode optical thermometry using dual polarization modes in a silicon nitride waveguide resonator for the first time, to the best of our knowledge. The temperature responsivity and sensitivity of the dual-mode TE/TM resonance difference is 180.7$pm$2.5 MHz/K and 82.56 $mu$K, respectively, in a silicon nitride resonator with a 179.9E6 intrinsic TM mode Q factor and a 26.6E6 intrinsic TE mode Q factor. Frequency stabilization is demonstrated by locking a laser to the TM mode cavity resonance and applying the dual-mode resonance difference to a feedforward laser frequency drift correction circuit with a drift rate improvement to 0.31 kHz/s over the uncompensated 10.03 kHz/s drift rate. Allan deviation measurements with dual-mode feedforward-correction engaged shows that a fractional frequency instability of 9.6E-11 over 77 s can be achieved.
Optical fibers have been recognized as one of the most promising host material for high phase coherence optical frequency transfer over thousands of kilometers. In the pioneering work, the active phase noise cancellation (ANC) technique has been widely used for suppressing the fiber phase noise introduced by the environmental perturbations, in which an ideal phase detector with high resolution and unlimited detection range is needed to extract the fiber phase noise, in particular for noisy fiber links. We demonstrate the passive phase noise cancellation (PNC) technique without the need of phase detector could be preferable for noisy fiber links. To avoid the effect of the radio frequency (RF) from the time base at the local site in the conventional active or passive phase noise cancellation techniques, here we introduce a fiber-pigtailed acousto-optic modulator (AOM) with two diffraction order outputs (0 and +1 order) with properly allocating the AOM-driving frequencies allowing to cancel the time base effect. Using this technique, we demonstrate transfer of coherent light through a 260 km noisy urban fiber link. The results show the effect of the RF reference can be successfully removed. After being passively compensated, {we demonstrate a fractional frequency instability of $4.9times10^{-14}$ at the integration time of 1 s and scales down to $10^{-20}$ level at 10,000 s in terms of modified Allan deviation over the 260 km noisy urban fiber link}. The frequency uncertainty of the retrieved light after transferring through this noise-compensated fiber link relative to that of the input light achieves $(0.41pm4.7)times10^{-18}$. The proposed technique opens a way to a broad distribution of an ultrastable frequency reference with high coherence without any effects coming from the RF reference and enables a wide range of applications beyond metrology over fiber networks.
We build a resonant fiber optic gyro based on Kagome hollow-core fiber. A semi-bulk cavity architecture based on a 18-m-long Kagome fiber permits to achieve a cavity finesse of 23 with a resonance linewidth of 700 kHz. An optimized Pound-Drever-Hall servo-locking scheme is used to probe the cavity in reflection. Closed-loop operation of the gyroscope permits to reach an angular random walk as small as 0.004$^circ/sqrt{mathrm{h}}$ and a bias stability of 0.45$^circ$/h over 0.5 s of integration time.