Resolving the Discrepancy of Galaxy Merger Fraction Measurements at z ~ 0 - 3


Abstract in English

We measure the merger fraction of massive galaxies using the UltraVISTA/COSMOS $Ks$-band selected catalog, complemented with the deeper, higher resolution 3DHST+CANDELS catalog selected in the HST/WFC3 $H$-band, presenting the largest mass-complete photometric merger sample up to $zsim3$. We find that selecting mergers using the $H_{160}$-band flux ratio leads to an increasing merger fraction with redshift, while selecting mergers using the stellar mass ratio causes a diminishing redshift dependence. Defining major and minor mergers as having stellar mass ratios of 1:1 - 4:1 and 4:1 - 10:1 respectively, the results imply $sim$1 major and $lesssim$1 minor merger for an average massive (log$(M_{star}/M_{odot}) geqslant 10.8$) galaxy during $z=0.1-2.5$. There may be an additional $sim 0.5(0.3)$ major (minor) merger if we use the $H$-band flux ratio selection. The observed amount of major merging alone is sufficient to explain the observed number density evolution for the very massive (log$(M_{star}/M_{odot}) geqslant 11.1$) galaxies. We argue that these very massive galaxies can put on a maximum of $6%$ of stellar mass in addition to major and minor merging, so that their number density evolution remains consistent with observations. The observed number of major and minor mergers can increase the size of a massive quiescent galaxy by a factor of two at most. This amount of merging is enough to bring the compact quiescent galaxies formed at $z>2$ to lie at $1sigma$ below the mean of the stellar mass-size relation as measured in some works (e.g. Newman et al. 2012), but additional mechanisms are needed to fully explain the evolution, and to be consistent with works suggesting stronger evolution (e.g. van der Wel et al. 2014).

Download